

Model-Checking Mean-Field Models:
Algorithms & Applications

Anna Kolesnichenko

Graduation committee:

Chairman: Prof.dr. Peter M.G. Apers
Promoter: Prof. dr. ir. Boudewijn R. Haverkort
Promoter: Prof. dr. Anne Remke
Assistant promoter: Dr. ir. Pieter-Tjerk de Boer

Members:
Prof. dr. ir. Joost-Pieter Katoen University of Twente
Prof. dr. Hans van den Berg University of Twente
Prof. dr. Peter Buchholz Technical University of Dortmund
Prof. dr. Jeremy Bradley Imperial College London
Prof. dr. William H. Sanders University of Illinois

CTIT Ph.D. - thesis Series No. 14-341
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, NL – 7500 AE Enschede

ISSN 1381-3617
ISBN 978-90-365-3821-3
DOI 10.3990/1.9789036538213
http://dx.doi.org/10.3990/1.9789036538213

Type set with LATEX. Printed by Gildeprint Drukkerijen.
Cover illustration: www.derekdesign.ru

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

MODEL-CHECKING MEAN-FIELD MODELS:
ALGORITHMS & APPLICATIONS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op woensdag 17 december 2014 om 16.45 uur

door

Anna Victorovna Kolesnichenko

geboren op 13 mei 1985
te Volgograd, Rusland

Dit proefschrift is goedgekeurd door:
Prof. dr. ir. Boudewijn R. Haverkort (promotor)
Prof. dr. Anne Remke (promotor)
Dr. ir. Pieter-Tjerk de Boer (assistent-promotor)

To my family
Моей семье

Abstract
Large systems of interacting objects are highly prevalent in today’s world. Such
system usually consist of a large number of relatively simple identical objects,
and can be observed in many different field as, e.g., physics (interactions of
molecules in gas), chemistry (chemical reactions), epidemiology (spread of the
infection), etc. In this thesis we primarily address large systems of interacting
objects in computer science, namely, computer networks. Analysis of such large
systems is made difficult by the state space explosion problem, i.e., the number
of states of the model grows exponentially with the number of interacting
objects.

In this thesis we tackle the state-space explosion problem by applying mean-
field approximation, which was originally developed for models in physics, like
the interaction of molecules in a gas. The mean-field method works by not
considering the state of each individual object separately, but only their aver-
age, i.e., what fraction of the objects are in each possible state at any time.
It allows to compute the exact limiting behaviour of an infinite population of
identical objects, and this limiting behaviour is a good approximation, even
when the number of objects is not infinite but sufficiently large. In this thesis
we provide the theoretical background necessary for applying the mean-field
method and illustrate the approach by a peer-to-peer Botnet case study.

This thesis aims at formulating and analysing advanced properties of large
systems of interacting objects using fast, efficient, and accurate algorithms.
We propose to apply model-checking techniques to mean-field models. This
allows (i) defining advanced properties of mean-field models, such as surviv-
ability, steady-state availability, conditional instantaneous availability using
logic; and (ii) automatically checking these properties using model-checking
algorithms. Existing model-checking logics and algorithms can not directly be
applied to mean-field models since the model consist of two layers: the local
level, describing the behaviour of a randomly chosen individual object in a
large system, and the global level, which addresses the overall system of all

viii

interacting objects. Therefore, we motivate and define two logics, called Mean
Field Continuous Stochastic Logic (MF-CSL), and Mean-Field Logic (MFL),
for describing properties of systems composed of many identical interacting
objects, on both the local and the global level. We present model-checking
algorithms for checking both MF-CSL and MFL properties, and illustrated
these algorithms using an extensive example on virus propagation in a com-
puter network. We discuss the differences in the expressiveness of these two
logics as well as their possible combination.

Additionally, we combine the mean-field method with parameter fitting
techniques in order to model real-world large systems, and obtain a better
understanding of the behaviour of such systems. We explain how to build a
mean-field model of the system, and how to estimate the corresponding para-
meter values, so as to find the best fit between the available data and the model
prediction. We also discuss a number of intricate technical issues, ranging from
the additional (preprocessing) work to be done on the measurement data, the
interpretation of the data to, for instance, a restructuring of the model (based
on data unavailability), that has to be performed before applying the parameter
estimation procedures. To illustrate the approach we estimate the parameter
values for the outbreak of the real-world computer worm Code-Red.

The techniques presented in this thesis allow an involved analysis of large
systems of interacting objects, including (i) obtaining parameter values of
mean-field model using measurements; (ii) defining advanced properties of the
model; and (iii) automatically checking such properties.

Аннотация
В современном мире большое распространение получили системы, состо-
ящие из большого количества сравнительно простых и идентичных взаи-
модействующих объектов. Такие системы встречаются, например, в фи-
зике (взаимодействие частиц газа), химии (химические реакции), эпиде-
миологии (распространение инфекций) и так далее. В данной диссертации
мы фокусируемся главным образом на системах, состоящих из большого
количества взаимодействующих объектов (далее больших системах) в тео-
рии вычислительных машин и систем, а именно, в компьютерных сетях.
Анализ таких систем усложняется так называемым явлением взрыва прос-
транства состояний (state-space explosion), что означает, что количество
состояний растет экспоненциально вместе с количеством взаимодействую-
щих объектов. Традиционно эта проблема решается при помощи так на-
зываемого mean-field method, что можно перевести как метод среднего
или самосогласованного поля, который был первоначально разработан для
моделирования взаимодействия мoлекул газа в физике. Аппроксимация
с помощью метода среднего поля не позволяет анализировать состояние
каждого объекта в системе, вместо этого анализируется доля (количество)
объектов в каждом из возможных состояний. В данной диссертации мы
приводим теоретические основы, необходимые для использования метода
среднего поля, и иллюстрируем применение метода на примере анализа
распространения так называемого децентрализованного ботнета (peer-to-
peer Botnet).

Цель этой диссертации - создание быстрых, эффективных и точных
методов для формулирования и анализа нетривиальных свойств (специ-
фикаций) больших систем взаимодействующих объектов. Мы предлагаем
использовать методы проверки на моделях (model-checking) для моделей
среднего поля. Это позволит, во-первых, сформулировать нетривиальные
свойства моделей, используя язык формальной логики, и, во-вторых, авто-
матически проверить удовлетворяет ли заданная модель системы фор-

x

мальным спецификациям. Существующие языки формальной логики и
алгоритмы автоматической проверки не позволяют сформулировать и про-
верить свойства моделей среднего поля из-за того, что такие модели вклю-
чают два уровня: локальный, описывающий произвольный объект в сис-
теме, и глобальный, описывающий всю систему. Это послужило причиной
для создания нами двух новых языков формальной логики, которые на-
зываются Mean Field Continuous Stochastic Logic (MF-CSL) и Mean-Field
Logic (MFL), что может быть переведо как Непрерывная Стахостическая
Логика Среднего Поля и Логика Среднего Поля. Эти языки формаль-
ной логики позволяют формулировать спецификации для больших систем
взаимодействующих объектов на обоих, локальном и глобальном, уровнях.
Мы приводим алгоритмы автоматичeской проверки на модели и иллюстри-
руем их, используя пример распространения вируса в компьютерной сети.
Мы также обсуждаем разницу между двумя предложенными языками и
их возможную комбинацию.

Для того, чтобы лучше изучить данную реальную большую систему
взаимодействующих объектов, мы предлагаем дополнить моделирование
реальных систем за счет комбинации метода среднего поля и методов
для поиска значений параметров модели (parameter estimation). В этой
части диссертации мы объясняем, как данные, полученные при измерении
системы, могут быть использованы для определения значений параметров
модели этой системы. Мы также обсуждаем возможные технические слож-
ности и необходимость предварительной обработки данных перед началом
анализа. Для иллюстрации предложенного подхода мы определяем значе-
ния параметров модели широко известного компьютерного вируса (червя)
Код-Красный (Code-Red worm), используя данные, полученные в 2001
году.

Методы, предложенные в этой диссертации, позволяют проводить ши-
рокий анализ реальных больших систем взаимодействующих объектов,
что включает в себя, во-первых, определение значений параметров модели
среднего поля такой системы, во-вторых, формулировку нетривиальных
свойств полученной модели и, в-третьих, автоматическую проверку сфор-
мулированных свойств.

Contents

Contents xi

1 Introduction 1
1.1 The aim of the thesis and research questions 2
1.2 Research questions: Illustration 3
1.3 Approach . 6

1.3.1 Mean-field method . 7
1.3.2 Parameter estimation 8
1.3.3 Model-checking . 9

1.4 Structure of the thesis . 10

I Mean-Field Method 13

2 Mean-field method 17
2.1 Model definition . 17
2.2 Mean-field analysis . 21
2.3 Beyond Kurtz’s theorem . 24

3 Botnet case-study 27
3.1 Peer-to-peer botnet . 27
3.2 SAN model . 28
3.3 Mean-field model of the botnet behaviour 29
3.4 Mean-field versus simulation . 34

3.4.1 Simulation set-up . 34
3.4.2 Mean-field setup . 36
3.4.3 Number of propagation bots (baseline) 37
3.4.4 User factor (Experiments 1-2) 37
3.4.5 Removal rate (Experiments 3-6) 38

xii CONTENTS

3.4.6 Observation about the method 38
3.4.7 Run time . 40

3.5 Exploiting the speed-up . 41
3.5.1 Removal rates of active and inactive bots 41
3.5.2 Cost introduced by the botnet 43

3.6 Concluding remarks . 45

II Parameter Fitting 47

4 Parameter estimation for mean-field models 51
4.1 Motivation . 51
4.2 Parameter estimation procedures 53
4.3 Related work on parameter estimation 57

4.3.1 Differential equation model 57
4.3.2 Hybrid Markov population models 57
4.3.3 Code-Red worm . 58

4.4 Summary . 60

5 Code-Red worm model and available data 61
5.1 Code-Red. Introduction . 61
5.2 CRv2 mean-field model: first attempt 63
5.3 Code-Red data sets . 65

5.3.1 July 2001 . 65
5.3.2 August 2001 . 67
5.3.3 Available data . 67

5.4 Code-Red data analysis . 68
5.4.1 July 2001 . 69
5.4.2 August 2001 . 71

5.5 CRv2 mean-field model: reconsideration 72
5.5.1 Rebooting . 73
5.5.2 Patched machines . 73
5.5.3 Refined mean-field model 74
5.5.4 Adapted view on the data 75

5.6 Summary . 77

6 Code-Red case study. Results 79
6.1 Parameter-fitting applied to CRv2 79

CONTENTS xiii

6.2 Setting initial conditions . 80
6.3 CRv2 outbreak in July 2001 . 81

6.3.1 Setting the initial conditions for the July outbreak . . . 81
6.3.2 Reconsidering initial conditions 82
6.3.3 Double-checking assumptions 84

6.4 CRv2 outbreak in August 2001 87
6.5 Summary . 89
6.6 Concluding remarks . 89

IIIModel-Checking 93

7 Model-checking mean-field models 97
7.1 Motivation . 97
7.2 Related work . 98
7.3 Running example . 99

8 Mean-Field Continuous Stochastic Logic 107
8.1 CSL and MF-CSL . 107
8.2 Checking CSL formula at the local level 112

8.2.1 CSL for local mean-field models 113
8.2.2 Single until . 114
8.2.3 Nested until . 117
8.2.4 Steady-state operator 121
8.2.5 Satisfaction set of the local model Ml 122
8.2.6 Run time . 123

8.3 MF-CSL model-checking at the global level 123
8.3.1 Satisfaction for individual states 124
8.3.2 Satisfaction (time validity) set development 125

8.4 Summary . 133

9 Mean-Field Logic 135
9.1 MFL syntax and semantics . 135
9.2 Checking an MFL property . 138
9.3 Satisfaction set of an MFL formula 143

9.3.1 Time-independent operators 143
9.3.2 The until operator . 144

9.4 Summary . 149

xiv CONTENTS

10 Relation between MFL and MF-CSL 151
10.1 Comparison of MFL and MF-CSL 151
10.2 Combination of the two logics 153
10.3 Concluding remarks . 156

11 Conclusions 159

Bibliography 163

Acknowledgements 173

Благодарности 175

About the author 177

1

Introduction
Globalization is a process of international integration that aims at connecting
different parts of the world. Globalization allows ideas, knowledge, people,
and goods to move more easily around the globe. The new technologies, such
as communication networks, both physical and digital, are being designed in
order to support this process. Examples of such networks are wireless sensor
networks for civil or military surveillance purposes, distributed peer-to-peer file
sharing applications or malicious self-aggregating botnets, transport networks,
etc. These communication networks play a critical role in a modern world,
therefore, analysis of the behaviour of these systems is of our best interest.
Typical problems addressed during such analysis include reliability, survivab-
ility, long run behaviour, speed of propagation, etc. In order to perform such
analysis we first note that communication systems have a similar structure,
namely, they often consist of a very large number of interacting objects. If
each node is modelled explicitly, a formal performance or dependability eval-
uation of the system is limited to the restricted case where only a few objects
participate since the global model for a realistic number of nodes most probably
will suffer from state-space explosion.

Recently, much work has been done on the analysis of such large systems of
interacting objects. Markovian Agents have been used to predict the propaga-
tion of earth quake waves [25] or the behaviour of sensor networks [46]. The
dissemination of gossip information [7] and disease spread between islands [8]
was analysed using mean-field approximation. Hybrid approaches, combining
mean-field analysis and simulation, have been proposed for general systems of
interacting objects [72], but also to predict predator and prey behaviour [54].
Ordinary differential equations (ODEs) have been used to analyze the beha-
viour of intracellular signalling pathways [23] and for epidemiological models
[28] by using Performance Evaluation Process Algebra (PEPA).

Out of the many available approaches, in this thesis we have chosen the

2 1.1 The aim of the thesis and research questions

mean-field method which allows for a quick and accurate analysis of systems
consisting of a large number of interacting objects, while avoiding the state-
space explosion problem. The mean-field approximation is based on the con-
tinuous representation of the a discrete system. Instead of the behaviour of
the individual nodes in the system the behaviour of the whole system is ad-
dressed. The whole system behaviour is described via the average behaviour
of the individual objects (nodes).

1.1 The aim of the thesis and research questions

To be able to perform analysis of a large systems of interacting objects we
aim to formulate and analyse advanced properties of such systems using fast,
efficient, and accurate algorithms. The above goal can be divided into three
sub-goals, namely:

• modelling such systems at a reasonable level of abstraction;

• parametrizing the models with realistic values;

• describing and checking properties of the models.

By dividing the aim of the thesis into three parts we obtained the three research
questions which will be addressed in this thesis.:

Q1: Can mean-field method be used for fast, efficient, and
accurate analysis of large systems of interacting objects?

Q2: How to obtain realistic parameter values for
mean-field models?

Q3: How to express and automatically check advanced
properties of mean-field models?

In the following section we discuss a recent example of a real large system
of interacting objects as in [64], namely, the Stuxnet virus. We will use this
example as an illustration of the objectives that are of interest in this thesis,
and to illustrate issues that might arise while dealing with such large systems.

Introduction 3

1.2 Research questions: Illustration

Stuxnet is known as one of the most complex computer viruses; it was primar-
ily written to target Industrial Control Systems (ICSs). Recently, many pa-
pers and reports were published on the analysis of Stuxnet’s code, [40], [61].
Moreover, the Boolean logic Driven Markov Processes have been used to model
the fundamental mechanisms of the Stuxnet attack [68]. Quantitative analysis
of Stuxnet has not been done so far, mostly because the necessary information
was not readily available. However, quantitative analysis can be very useful,
for example to obtain better insight in the spreading process and to analyse
the efficiency of counter-measures.

Stuxnet was first discovered in July 2010; however, it had been operating
without being noticed for at least one year prior to its detection. The virus
uses both known and unknown Windows vulnerabilities to install and propag-
ate. During the propagation phase, Stuxnet behaves similarly to known worms
and botnets. Once it reaches its target, it sabotages the system by reprogram-
ming Programmable Logic Controllers (PLCs), which can lead to a disaster,
e.g. damage to the production of the centrifugal machines in Iranian nuclear
enrichment facilities.

The behaviour of Stuxnet consists of three phases: spreading, obtaining
access to the PLC, and sabotage. In the present example (and other examples
in this thesis), we only address the spreading phase. Modelling of the attacking
and sabotaging phases is of less interest, since once the target is reached,
Stuxnet accomplished its mission almost surely.

Stuxnet has the ability to propagate using different methods. We classify
them for further discussion as follows (see Table 1):

• propagation via USB flash drives and other removable media;

• propagation via a network;

• propagation via shared folders.

Copying itself to removable drives is the main method of propagation, since
ICSs are usually programmed through computers that are not connected to
a network. Operators use removable drives to exchange data, and once the
infected removable drive is inserted into a new computer, Stuxnet will copy
itself and its supporting files. The newly compromised computer can infect
other USB drives afterwards.

4 1.2 Research questions: Illustration

Local Remote
Manual Removable drives Shared folder
Automatic – Network

Table 1.1: Classification of propagation mechanisms

Propagation via a network can be seen as botnet or worm spread, which
have been recently studied and modelled, e.g., [22], [42]. Note that network
propagation is the only fully automatic way of spreading.

The third way of propagation includes infection via shared folders or net-
work drives, and print spooler services. For example, Stuxnet will execute on
each computer where a compromised folder is used.

Stuxnet spreads mainly within company networks. However, propagation
between networks of different companies is possible if, for example, the com-
promised computer has a VPN connection to an outside network, or an infected
USB stick is taken to the outside network (and used there).

The behaviour of Stuxnet is controlled remotely. After installation, the
virus contacts a command and control (C&C) server and sends information
about the compromised computer. The C&C servers are mostly used for
spreading new versions of the virus. However, the ability to receive informa-
tion from outside can be used by attackers to help the worm propagate through
specific target networks or, alternatively, stop propagation.

Given the above description of the Stuxnet behaviour one can proceed with
the quantitative analysis of the virus. The valuable question now is: how can
we analyse this system?

Q1: Can mean-field method be used for fast, efficient,
and accurate analysis of such large systems?

Out of many approaches, in this thesis we select themean-field method. The
main idea of the mean-field analysis is to describe the evolution of a population
that is composed of many similar objects via a deterministic behaviour. The
full description on how to built a mean-field model of such systems will follow
in Chapter 2 of the thesis.

With respect to the Stuxnet example, we have shown that it is possible
to build such a model in [64]. However, in order to conduct a meaningful
quantitative analysis of Stuxnet and similar large systems values for many

Introduction 5

model parameters (such as infection rates) are needed. Hence, another relevant
research question we want to address is the following.

Q2: How to obtain realistic parameter values for
mean-field models?

Unfortunately, obtaining such parameter values is not trivial. The automatic
spreading via the network is probably the easiest to parametrize, since it does
not involve humans. One could obtain values for these parameters analysing
the Stuxnet code, or by doing measurements on live infected computers. This
is not trivial for several reasons:

• it either needs a sufficiently large test-bed, or a real target environment;

• accurate measurements may take a long time since Stuxnet does not tend
to spread very quickly;

• results may be inaccurate due to the “synthetic” environment.

Aspects that involve humans are even harder to parametrize; in the case of
Stuxnet, this includes the propagation via shared folders and removable USB
drives, and the influence of the C&C server. Such parameters are in general
difficult to obtain, since they require knowledge of a large part of the internet
community. However, in 2010 a report has been published that takes into
account the human factor in cybercrime [94].

Having the mean-field model built (and parametrized) one can obtain
knowledge about transient and, possibly, stationary behaviour of the system.
Moreover, an automated way to express and check the advanced properties of
the model, e.g., survivability, steady-state availability, conditional instantan-
eous availability, etc, might be of a great interest. Therefore, the last question
we have is as follows:

Q3: How to express and automatically check advanced
properties of mean-field models?

Such properties can be expressed by using model-checking techniques, there-
fore, introducing a logic and algorithms for describing and automatic checking
properties of the mean-field model of a large system, like Stuxnet, might be
beneficial. However, this is not a trivial task due to the nature of the mean-
field model. We describe the challenges of model-checking mean-field model in
the following section.

6 1.3 Approach

Large system of
interacting objects

Mean-field model:
Structure

(Part I)

Parameterized
 mean-field model

(Part II)

Basic model
properties

(Part I)

Advanced model
properties
(Part III)

logic

data

m
ea

n
-f

ie
ld

m

et
h

o
d

performance
evaluation

parameter estimation

model-checking model-checking

performance
evaluation

Figure 1.1: The structure of the proposed approach and the outline of the
thesis.

1.3 Approach

In the previous section we defined three main questions which will be addressed
in this thesis. When these questions are combined the approach towards the
aim of the thesis becomes apparent.
Figure 1.1 illustrates the proposed approach. The analysis of a large system
starts with building a mean-field model. This model can then either be para-
metrized using real data, or used without assigning realistic parameters values.
Even without complete knowledge of the parameter values, potentially inter-
esting results may be obtained. For example, by trying different values for
the unknown parameters, the sensitivity of the final results to them can be
studied, and possibly upper and lower bounds obtained. Moreover, advanced

Introduction 7

properties of such model can be checked using model-checking algorithms. If
the model can be parametrized, obtaining basic (e.g., transient behaviour, sta-
tionary behaviour, bounds, etc.) or advanced (e.g., survivability, availability,
etc.) properties yields potentially even more realistic results.

As one can see, both complete and partial combinations of answers to the
above questions can yield interesting results, e.g.,

• combination Q1, Q2 and Q3 allows building and parametrizing a mean-
field model, and automatically check advanced properties of this model;

• combination Q1 and Q2 allows building and parametrizing a mean-field
model, and obtaining basic properties of this model;

• combination Q1 and Q3 allows building a mean-field model, and auto-
matically checking advanced properties of this model.

In the following we briefly introduce the three main topics of this thesis. Each
of the presented topics allows us to answer one of the research questions, and
will be covered in more detail further in the respective part of the thesis.

1.3.1 Mean-field method

Mean-Field Approximation originated in statistical physics [4] and is a tech-
nique developed within the field of probability theory. This technique is useful
to study the behaviour of stochastic processes with a very large state space,
e.g., in the study of systems with a large number of particles, where Monte
Carlo simulations are impractical. Beyond physics, this approximation tech-
nique has been applied in studies of, e.g., epidemics models [63], queueing
theory [15], [4], and network performance [72], [26].

Classical applications of this technique generally require two abstractions.
The first is that when studying the system, one abstracts the objects’ identities,
and instead of capturing the behaviour of each object instance, the system’s
behaviour is observed at the level of populations [59]. The second abstraction
suggests that the spatial distribution of the objects across the system locations
is ignored, and the “particles” are assumed to be uniformly spread across the
system space (in chemistry this idea is embodied in the notion of well-stirred
chemical reaction [44], [98]).

Process algebra is a high-level formalism, which is being widely used in per-
formance modelling due to the well defined and convenient structure. Continuous

8 1.3 Approach

Time Markov Chains (CTMCs) are often used to provide a stochastic semantics
to process algebra used in performance modelling of computer systems [56].
However, stochastic process algebra models of realistic size can easily result in
very large and intractable state-spaces. In that context a technique called fluid-
flow approximation [57] has been used to construct a continuous state-space
representation of the underlying discrete state-space, and ordinary differential
equations are used to describe their dynamics. This technique corresponds to
results on mean-field approximation of CTMCs [97], [59], [51]. Indeed, the
notion of fluid approximation has been used in various contexts such as Petri
nets, and relies on the idea that a discrete variable can be approximated using
a continuous variable [89].

Applying mean-field analysis from the computer science perspective re-
quires the following major steps: (1) describing how a large population of
interacting objects evolves by means of a system of differential equations, (2)
finding the emergent deterministic behaviour of the system by solving such dif-
ferential equations, and (3) analysing properties of this behaviour. Moreover,
a local mean-field model can be obtained based on the mean-field model of the
whole population, which allows to study the behaviour of individual objects
within the whole system in an efficient way.

1.3.2 Parameter estimation

Model-based evaluation is widely used for real systems, however, it is often
difficult to obtain realistic parameter values for the models. This is particularly
the case for large scale distributed systems, like applications running in the
internet, for which a structured measurement set-up is very difficult to achieve,
or even impossible to obtain. To ensure that the model complies with the
system, parameters can be assigned by, for example, one (or a combination) of
the following methods: (1) predefined experimental settings; (2) analysis of a
real system; (3) measurements. In this thesis we follow the third approach: we
discuss how measured data can be used to obtain the parameters of a mean-
field model. Doing this we expand the application of mean-field approximation
to real-world systems by estimating realistic parameters of the obtained model.

Parameter estimation techniques are widely used in application areas such
as biochemical reactions [76], computer vision [106], cosmology [73], etc. In
this thesis we combine a mean-field model of worm behaviour with parameter
fitting techniques, and illustrate their combination on the case of the Code-Red

Introduction 9

worm. We will use two well-known parameter estimation methods, namely,
squared error [1] and maximum likelihood [78] in this thesis. We build a mean-
field model of Code-Red worm and obtain the parameter values based on the
real data using the above two estimation techniques.

1.3.3 Model-checking

In the course of the last few years the mean-field method was widely used for
the analysis of large systems of interacting objects. In the past the method
was mainly used for performance evaluation. In this thesis we propose to apply
model-checking techniques to mean-field models.

Model-checking means checking whether a system state satisfies certain
properties. It was initially introduced for finite deterministic models, for val-
idation of computer and communication systems, and later extended towards
stochastic models and models with continuous time [5], [6]. Model-checking
models of large systems is made difficult by the state-space explosion prob-
lem. Since the mean-field method avoids this problem, mean-field models can
potentially be checked using model-checking techniques. However, the direct
application of model-checking techniques to mean-field models is challenging
due to the following reasons:

• there is no readily available techniques which can directly be applied to
model-check a mean-field model;

• the mean-field model has two layers (global and local), therefore it is
essential to be able to formulate properties on both levels;

• as we will see, the local mean-field model is a time-inhomogeneousMarkov
chain (ICTMC), therefore the results of the model-checking procedure
depend on time;

• the state-space of the global mean-field model is infinitely large, hence,
capturing exact satisfaction set is difficult.

In this thesis we face the above challenges and introduce and motivate two
logics, called Mean Field Continuous Stochastic Logic (MF-CSL), and Mean-
Field Logic (MFL), for describing properties of systems composed of many
identical interacting objects. The two logics have been defined to be able
to express timed properties on both local and global levels. MF-CSL first

10 1.4 Structure of the thesis

expresses the property of a random node in a system (including timed prop-
erties) and then lifts this to the system level using expectation operators. In
contrast, MFL expresses the property of the overall system directly and it does
not take into account the behaviour of the individual objects. The new model-
checking algorithms are presented and illustrated using an extensive example
on virus propagation in a computer network. We discuss the differences in the
expressiveness of these two logics as well as their possible combination.

1.4 Structure of the thesis

The thesis consists of eleven chapters, which are grouped into three parts,
where each part corresponds to one of the research questions, presented above.

Part I provides theoretical background on the mean-field method, which is
illustrated by a case-study on peer-to-peer Botnet spread.

Chapter 2 defines the mean-field model, discusses the mean-field conver-
gence theorem, and practical extensions to the theorem, including be-
haviour in the stationary regime and a definition of the local mean-field
model.

Chapter 3 discusses how to build the mean-field model of a peer-to-peer
Botnet. It compares the results obtained by the mean-field approach
to those obtained from simulation. In addition, it provides examples of
more advanced studies that can be performed using mean-field analysis.

Part II discusses how to obtain the parameters of a mean-field model using
real data on the Code-Red worm example.

Chapter 4 motivates the performed case-study. It discusses background
information on the parameter estimation methods and related work.

Chapter 5 provides the set-up of the case-study. It discusses background
of the Code-Red worm, the available data, and the mean-field model of
the worm behaviour.

Chapter 6 contains the results of the case-study and concluding remarks.

Part III introduces model-checking techniques for mean-field models.

Introduction 11

Chapter 7 provides a motivation and discusses related work.

Chapter 8 defines the logic MF-CSL for checking properties of mean-field
models. It discusses model-checking algorithms, whicch can be used to
check MF-CSL properties.

Chapter 9 introduces the logic MFL together with the corresponding
model-checking algorithms, and discusses the satisfaction set develop-
ment.

Chapter 10 provides a comparison of the two logics, and discusses the
combination of the two logics.

Chapter 11 summarizes the content of the thesis and indicates future research
directions.

Part I

Mean-Field Method

T he main idea of the mean-field analysis is to describe the evolution of a
population that is composed of many similar objects via a deterministic beha-
viour. It states that under certain assumptions on the dynamics of the system
and when the size of the population grows, the ratio of the system’s variance
(standard deviation) to the size of the state space of the whole population
tends to zero. Therefore, when the population is large, the stochastic beha-
viour of the system can be studied through the unique solution of a system of
Ordinary Differential Equations (ODE)s defined by using the limit dynamics
of the whole system.

In this part we first provide the theoretical background on the mean-field
method and illustrate the usability of the approach by a case-study on peer-
to-peer Botnet spread. We define overall and local mean-filed models and
recall the mean-field convergence theorem in Chapter 2. The application of
the mean-field method to a peer-to-peer Botnet is discussed in Chapter 3.

2

Mean-field method
In this chapter we provide the theoretical background on the mean-field method
based on [67]. The presented way of reasoning is slightly different from, for
example, [20], but is more useful for the further developments, presented in this
thesis. We describe how to construct the local and global mean-field models
and use the reformulation of the classical Kurtz’s Theorem [69], instead of
defining population models. We provide small examples for each essential part
to illustrate the practical application of the theoretical material.

This chapter is further organized as follows. Section 2.1 defines overall
mean-field model. The convergence theorem is discussed in Section 2.2. Fi-
nally, the valuable extensions to the convergence theorem are described in
Section 2.3.

2.1 Model definition

Let us start with a random individual object which is part of a large population.
We assume that the size N of the population is constant; furthermore, we do
not distinguish between classes of individual objects for simplicity of notation.
However, these assumptions can be relaxed, see, e.g., [26].

The behaviour of a single object can be described by defining the state-
space Sl = {s1, s2, . . . sK} that contains the states or “modes” this object may
experience during its lifetime, the labelling of the state space L : Sl → 2LAP

that assigns local atomic propositions from a fixed finite set of Local Atomic
Properties (LAP) to each state; and the transitions between these states.

Example 2.1.1. We introduce the model defining the modes of an individual
computer, which is exposed to the infection. Such a machine can be not-
infected, infected and active or infected and inactive. An infected computer is
active when it is spreading the virus and inactive when it is not. This results

18 2.1 Model definition

Figure 2.1: The model describing computer virus spread.

in the finite local state space Sl = {s1, s2, s3} with |Sl| = K = 3 states. These
states are labelled as infected, not infected, active and inactive, as indicated
in Figure 2.1. Formally, L(s1) = {not infected}; L(s2) = {infected, inactive};
L(s3) = {infected, active}; and the set of local atomic properties is given by
LAP = {not infected, infected, inactive, active}. ©

In the following we will consider a large population of N objects, where each
individual is modelled as described above, and denoted as Mi for i ∈ [1, N].
Let us first try to preserve the identity of each object and build the model,
describing the behaviour of N objects individually. It is easy to see that when
the population grows linearly the size of the state-space of the model grows
exponentially. For example, when the system is composed of three computers
(as in Example 2.1.1), the size of the state space is 33 = 27 states, where each
state represents the mode of all three computers individually, and is labelled
accordingly as, e.g., {{ not infected}, {not infected}, {not infected}}. As one
can see, for a large number of computers N such model with 3N states might
be too large to handle. Fortunately, the mean-field approach allows modelling
such a system of indistinguishable objects and avoids exponential growth of the

Mean-field method 19

state-space (state space explosion). In the following we describe the method in
more detail and explain how it can be applied to the computer virus example.

Given the large number of objects, where each individual is modelled by
M, we proceed to build the overall model of the whole population. We assume
that all objects behave identically, therefore, we can move from the individual
representation to a collective one, that does not reason about each object sep-
arately, but gives number (fraction) of individual objects in a given state of
the model M. It is done by taking the following steps:

Step 1. Lump the state space. When preserving the identity of the
objects in a population (M1,M2 . . .MN) the sequence of the models of indi-
vidual objects can be considered as a model of the population. However, the
size of such sequence depends on N . Due to the identical and unsynchronized
behaviour of the individual objects, a counting abstraction (or transition from
the individual to a collective representation) is used to find a smaller stochastic
process, denoted as M(N), whose states capture the number of the individual
objects across the states of the local model M:

M
(N)
j =

N∑
i=1

1{Mi = j}.

The state of M(N) at time t is a counting vector M(t) = (M1(t),M2(t), . . . ,
MK(t)), where Mi ∈ {0, . . . , N}, and ∑K

i=1Mi = N . The initial state is de-
noted as M(0).

Step 2. Defining transition rates. Given M(N) and M(0) as defined
above the Continuous Time Markov Chain (CTMC) M(N)(t) can be easily
constructed. The transition rates are defined as follows [15]:

Qi,j(M(t))=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limΔ→0

1
ΔProb

{
M(t+Δ)) = j|
M(t) = i,M(t)

}
, if Mi(t) > 0,

0, if Mi(t) = 0,

−∑
h∈Sl,h �=iQi,h(M(t)), for i = j,

where M(t) indicates the state of the individual object at time t. The trans-
ition matrix depends on time via M(t).

20 2.1 Model definition

Step 3. Normalize the population. For the construction of the mean
field model which does not depend on the size of the population the state
vector is normalized as follows:

m(t) =
M(t)

N
,

where 0 ≤ mi(t) ≤ 1 and
∑K

i=1mi = 1.
When normalizing, first we have to make sure that the related transition rates
are scaled appropriately. The transition rate matrix for the normalized popu-
lation is given by:

Q(m(t)) = Q(N ·m(t)).

Secondly, the initial conditions have to scale appropriately. this is commonly
called convergence of the initial occupancy vector [29], [30]:

m(0) =
M(0)

N
.

The overall mean-field model can then be constructed as follows.

Definition 2.1.2 (Overall mean-field model). An overall mean-field model
MO describes the limit behaviour of N → ∞ identical objects and is defined
as a tuple (So, Q), that consists of an infinite set of states:

So ={m = (m1,m2, . . . ,mK)|∀j ∈ {1, . . . ,K},

mj ∈ [0, 1] ∧
K∑
j=1

mj = 1},

where m is called occupancy vector, and m(t) is the value of the occupancy
vector at time t; mj denotes the fraction of the individual objects that are in
state sj of the modelM. The transition rate matrix Q(m(t)) consists of entries
Qs,s′(m(t)) that describe the transition rate of the system from state s to state
s′.

�

Note that for any finite N the occupancy vector m is a discrete distribution
over K states, taking values in {0, 1

N , 2
N , . . . , 1}, while for infinite N , the mi

are real numbers in [0, 1].
To illustrate the relation between the model of a single object and the

overall mean-field model of the whole system, we continue to develop the mean-
field model for the virus spread example.

Mean-field method 21

Example 2.1.3. We assume that all computers in the system behave according
to the model described in Example 2.1.1. Given a system of N computers, we
can model the limiting behaviour of the whole system through the overall mean-
field model, which has the same underlying structure as the individual model
(see Figure 2.1), however, with state space So = m = (m1,m2,m3), where
m1 denotes the fraction of not-infected computers, and m2 and m3 denote the
fraction of inactive and active infected computers, respectively. For example,
a system without infected computers is in state m = (1, 0, 0); a system with
50% not infected computers and 40% and 10% of inactive and active infected
computers, respectively, is in state m = (0.5, 0.4, 0.1).

The transition rates k∗1, k2, k3, k4, k5 represent the following: the infection
rate k∗1, the recovery rate for an inactive infected computer k2, the recovery rate
for an active infected computer k5, and the rates with which computers become
active k3 and return to the inactive state k4. Rates k2, k3, k4, and k5 only
depend on the properties of the modelled computer virus and do not depend on
the overall system state. The infection rate k∗1 does depend on the fraction of
infected and active computers, and the fraction of not-infected computers. We
discuss the generator matrix in the next section. ©

2.2 Mean-field analysis

Here we express a reformulation of Kurtz’s theorem [69] which relates the beha-
viour of the sequence of models M1,M, . . . ,MN with increasing population
sizes to the limit behaviour. We reformulate the theorem to make it more
applicable to the further chapters of this thesis.

Before the theorem can be applied one has to check whether the overall
mean-field model satisfies the following two conditions:

1. the model preserves the so-called density dependence condition in the
limit N → ∞ for all N > 1. This means that transition rates scale
together with the model population, so that in the normalized models
they are independent of the size of the population.

2. The rate functions are required to be Lipschitz-continuous (informally it
means that rate function are not too steep).

22 2.2 Mean-field analysis

When the three steps for constructing the mean-field model are taken and
the above mentioned conditions are satisfied Kurtz’s theorem can be applied,
which can be reformulated as follows: For increasing values of the system size
(N → ∞) the sequence of the individual models converges almost surely [14]
to the occupancy vector m, assuming that functions in Q(m(t)) are Lipschitz-
continuous and for increasing values of the system size, the initial occupancy
vectors converge to m(0). The above statement can be formally rewritten as
in [15]:

Theorem 2.2.1 (Mean-field convergence theorem). The normalized occupancy
vector m(t) at time t < ∞ tends to be deterministic in distribution and satisfies
the following differential equations when N tends to infinity:

dm(t)

dt
= m(t) ·Q(m(t)), given m(0). (2.1)

�

The ODE (2.1) is called the limit ODE. It provides the results for the
population of size N → ∞, which is often an unrealistic assumption for real-life
systems. When the number of objects in the population is finite but sufficiently
large, the limit ODE provides an accurate approximation and the mean-field
method can be successfully applied.

The transient analysis of the overall system behaviour can be performed
using the above system of differential equations (2.1), i.e., the fraction of ob-
jects in each state of M at every time t is calculated, starting from some given
initial occupancy vector m(0), as illustrated in the following example.

Example 2.2.2. In the following we apply the mean-field method to the virus
spread model, as given in Example 2.1.3. We explain how to obtain the ODEs,
which describe the behaviour of the system and compute performance measures.

As was discussed in the example, all transition rates of a single computer
model are considered to be constant, except for k∗1. This rate depends on how
often a computer that is not infected yet is attacked. In this example we assume
that the virus is “smart enough” to attack not infected computers only. The
infection rate then can be seen as the number of attacks performed by all active
infected computers, distributed evenly over all not-infected computers:

k∗1(m(t)) = k1 · m3(t)

m1(t)
, (2.2)

Mean-field method 23

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

time

di
st
rib
ut
io
n

infected, active
infected, inactive
not infected

Figure 2.2: Distribution of the computers over the states of the model. Red,
blue, and green lines show the number of not infected, infected inactive and
infected active computers respectively.

where m(t) = (m1(t),m2(t),m3(t)) represents the fraction of computers in
each state of the local model Ml at time t, and k1 is the attack rate of a single
active infected computer.

The transition rates are collected in the generator matrix:

Q(m(t)) =

⎛⎝ −k∗1(m(t)) k∗1(m(t)) 0
k2 −(k2 + k3) k3
k5 k4 −(k4 + k5)

⎞⎠ . (2.3)

Then Theorem 2.2.1 is used to derive the system of ODEs (2.1):⎧⎨⎩
ṁ1(t) = −k1 ·m3(t) + k2 ·m2(t) + k5 ·m3(t),
ṁ2(t) = (k1 + k4) ·m3(t)− (k2 + k3) ·m2(t),
ṁ3(t) = k3 ·m2(t)− (k4 + k5) ·m3(t).

(2.4)

To obtain the distribution of objects over the states of the model at a given
time, the above ODEs have to be solved. Before the computation the parameters
have to be assigned to the model. Note that while in the following we assume
that a set of meaningful parameters is available, this is not necessarily always

24 2.3 Beyond Kurtz’s theorem

the case. In case parameters are not readily available they can be obtained by a
number of methods, we refer to Part II of this thesis for more details. In this
example we assume the following parameters:

k1 = 2.5, k2 = 0.02, k3 = 0.01, k4 = 0.3, k5 = 0.3.

Moreover, the initial conditions have to be fixed: m(0) = (0.9, 0, 0.1).
Figure 2.2 depicts the fraction of not infected, infected and inactive, and

infected and active computers in the system over time. As one can see, in
this example the virus managed to infect more than half of the population even
though the fraction of actively infecting computers remains very low.

Note that for the sake of simplicity in this example the total number of
machines in the population N was not assigned, as we directly moved to the
normalized model. In practice, however, the normalization step has to be taken,
as discussed in Section 2.1.

©

2.3 Beyond Kurtz’s theorem

In the following we discuss a couple of topics, which lie beyond the discussed
above convergence theorem. We first explain how the behaviour of individual
objects within the overall population can be modelled. Secondly, the pos-
sible relaxation on the assumption made when this theorem is formulated are
discussed. Then the behaviour in the stationary regime is briefly recalled.

Local model. The rates of the model for an individual object within the
population may depend on the overall system state (see, e.g., Equation (2.2)),
which means that the local model is a Time-Inhomogeneous Continuous Time
Markov Chain (ICTMC). To formally describe the behaviour of a single indi-
vidual in the population the asymptotic decoupling of the system is used, and
the result is often referred to as Fast Simulation [30, 43]. The main idea of this
method lies in the fact that every single object (or group of objects) behaves
independently from other objects, and can only sense the mean of the system
behaviour, which is described by m(t). The model of one object within the
population is called “local mean-field model” in the following and is defined as:

Definition 2.3.1 (Local model). A local model Ml describing the behaviour
of one object is defined as a tuple (Sl,Q, L) that consists of a finite set of K

Mean-field method 25

local states Sl = {s1, s2, ..., sK}; an infinitesimal generator matrix Q : (Sl ×
Sl) → R; and the labelling function L : Sl → 2LAP that assigns local atomic
propositions from a fixed finite set of Local Atomic Properties (LAP) to each
state.

�

Relaxing assumptions. For models considered in practice the assumption of
density dependence may be too restrictive [30]. Furthermore, also the assump-
tion of (global) Lipschitz continuity of transition rates can be unrealistic [16].
Therefore, these assumptions can be relaxed and a more general version of the
mean-field approximation theorem, having less strict requirements and which is
applied to prefixes of trajectories rather than to full model trajectories, can be
obtained. We will not focus on this reformulation of the convergence theorem
here, instead we refer to [20].

Moreover, the mean-field approach has recently been expanded to a class of
models with both Markovian and deterministically-timed transitions, as intro-
duced for generalized semi-Markov processes in [50]; and generally-distributed
timed transitions for population generalized semi-Markov processes [52]. In ad-
dition, the extension towards hybrid Markov population models has recently
been made in [92] and [91].

Stationary behaviour. The convergence theorem does not explicitly cover
the asymptotic behaviour, i.e., the limit for t → ∞. However, when certain
assumptions hold, the mean-field equations allow to perform various studies
including steady-state analysis. In the following we briefly recall how to assess
the steady-state behaviour of mean-field models as in [71].

The stochastic process (M(N)), which was approximated by the mean-field
model, has to be studied in order to find out whether the stationary distribution
exists. It has been shown that, if the stochastic process is reversible, the fixed
point approximation addressing the limiting behaviour of the overall mean-
field model is indeed valid. Fixed-point is an approximation of the stationary
behaviour of the stochastic process by the stationary points of the mean-field
(fluid) limit [71]. The reversibility of the stochastic process implies that any
limit point of its stationary distribution is concentrated on stationary points
of the mean-field limit. If the mean-field limit has a unique stationary point,
it is an approximation of the stationary distribution of the stochastic process.
The stationary distribution m̃ = limt→∞m(t), if it exists, then is the solution

26 2.3 Beyond Kurtz’s theorem

of:
m̃ ·Q(m̃) = 0. (2.5)

For some models the above equation can not be applied straight-forwardly
and more advanced methods are required in order to approximate the station-
ary distribution or its bounds. This, however, lies out of the scope of this
thesis; for more details we refer to [11].

Error bounds. As a further remark we want to point out that Theorem 2.2.1
allows to establish that, in the limit of the population size, the error of the
deterministic approximation goes to zero. However, we are not able to quantify
the error committed considering an intermediate system size. Details on worst-
case bounds on this error can be found, e.g. in [49], [17].

3

Botnet case-study
To illustrate the usability of the mean-field method, we present a model of
a peer-to-peer botnet. Using the obtained model we perform a model-based
evaluation of the botnet, similar to [65]. We compare the results, obtained by a
mean-field analysis to earlier results obtained by [99] for the same peer-to-peer
botnet.

While in this chapter we are not directly interested in obtaining new in-
sights on botnet behaviour, our goal is to show how a quick method of analysis
can be used to obtain different measures of interest that cannot be readily ob-
tained using simulation. The comparison shows that the mean-field method is
much faster than simulation, therefore, it allows to quickly address more com-
plicated and resource consuming questions, such as how the botnet spreads in
different environments. We show that we can obtain deeper insight into the
botnet behaviour, by taking into account the costs for running anti-malware
software and costs that occur due to computers being infected. Furthermore,
we discuss the differences between the mean-field method and simulation and
their respective suitability in different settings.

The chapter is further organized as follows. In Section 3.1 we give a short
description of peer-to-peer botnets. In Section 3.2 the simulation settings are
discussed. The mean-field model of a peer-to-peer botnet is built in Section 3.3,
and the results are provided in Section 3.4. Section 3.5 provides examples
of more advanced studies, that can be performed using mean-field analysis.
Finally, Section 3.6 concludes this chapter.

3.1 Peer-to-peer botnet

In the following we give a short definition of the peer-to-peer botnet, based
on [47]:

28 3.2 SAN model

• A peer-to-peer network is a network in which any node in the network can
act as both a client and a server. In a peer-to-peer architecture, there is
no centralized point for command-and-control (C&C).

• A bot is a program that performs user centric tasks automatically without
any interaction from a user.

• Botnet, also known as zombie army and Web robots, is the generic name
given to any collection of compromised PCs controlled by an attacker
remotely [41] or a network of malicious bots, that illegally control com-
puting resources.

Nodes in a peer-to-peer network act as both clients and servers such that
there is no centralized coordination point that can be incapacitated, which
make the botnet less vulnerable to the detection of a single bots. If nodes in the
network are taken off-line, the network continues to operate under the control of
the attacker. Different malicious botnets have been formed in the past, some
of these used existing peer-to-peer protocols for spreading (e.g., Peacomm,
Phatbot) while others have developed custom protocols (e.g., SpamThru, Sini).

A peer-to-peer botnet can be seen as a very large population (possibly all
computers in the Internet) of interacting components (peers), where infected
nodes infect more and more other computers. Due to the large number of (po-
tentially) active components, the analysis of the spreading of such large-scale
systems is time consuming and computationally expensive. In this chapter we
use mean-field approximation for the fast and accurate analysis of a generic
peer-to-peer botnet.

3.2 SAN model

A Stochastic Activity Network (SAN) [87] model has been introduced for peer-
to-peer botnets in [99]. It models how the infection spreads through an infinite
population of computers. As illustrated in Figure 3.1 the model closely reflects
the states a computer goes through after the initial infection has taken place.
The original SAN model consists of:

• one place for each phase of infection a system can be in, that can each
hold an unbounded number of tokens, representing the number of com-
puters per phase;

Botnet case-study 29

Figure 3.1: SAN model of the botnet as presented in [99] .

• transitions, which move tokens from place to place, as the infection
spreads, modelling change in the number of computers in each place.

The SAN model represents the entire population of infected computers,
hence, the number of computers in each state (phase) can be directly derived
from the model. However, as the population of computers can be very large
or even infinite, it is only possible to derive measures of interest from the SAN
model using simulation. The main focus in [99] has been the computation of
the mean numbers of computers in each of places, which has been obtained
by simulating the system 100 times. This is very time consuming and compu-
tationally expensive. Therefore, we propose to apply the mean-field method
to model the botnet spread in order to obtain faster results and an extended
knowledge of the system behaviour.

3.3 Mean-field model of the botnet behaviour

In the following we explain how to build a mean-field model of botnet propaga-
tion. We first develop an individual model, which reflects the behaviour of a
single computer. This model is based on the SAN model from [99]. The states

30 3.3 Mean-field model of the botnet behaviour

of the mean-field model mirror the states of the SAN model with one exception.
To be able to represent the whole population we add a state, which corresponds
to a non-infected computer. The local model is depicted in Figure 3.2 and the
corresponding transition rates can be found in Table 3.1. In the following we
provide more information on the botnet spread as modelled in this chapter.

A computer which is not infected yet (state 1) enters the InitialInfection
state (state 2) with rate k∗1 and becomes initially infected. Then, it connects
to the other bots in the botnet, downloads the next part of the malware and
possibly moves to state ConnectedBot (state 3) with rate k2. If the computer
for any reason is not able to download the malware it returns to the state
NotInfected with rate k3.

After downloading the malware, the computer joins the botnet as either In-
activeWorkingBot (state 4) or as InactivePropagationBot (state 6) with rates k4
and k5, respectively. If downloading the malware is not possible, for example,
because the connection has failed, the computer moves back to the NotInfec-
ted state with rate k6. Once the bot becomes either an InactiveWorkingBot
or an InactivePropagationBot it never switches between Working or Propaga-
tion. Propagation bots spread infections, that is they try to infect as many
new computers as possible. Working bots, on the other hand, do not spread
infection, but work on harming the target, e.g., sending spam or performing
denial-of-service attacks.

In order not to be detected, the bot is inactive most of the time and only
becomes active for a very short period of time. Transitions from Inactive-
PropagationBot (state 7) to ActivePropagationBot (state 5) and back occur
with rates k7 and k8, respectively. The transition rates for moving from Inact-
iveWorkingBot to ActiveWorkingBot and back are denoted k9 and k10, corres-
pondingly.

The computer can recover from its infection, e.g., if an anti-malware soft-
ware discovers the virus, or if the computer is physically disconnected from
the network. It then leaves the InactivePropagationBot state or the Active-
PropagationBot state and moves to the NotInfected state with rates k13, k14,
correspondingly. The same holds for the working bots ; the transition rates of
InactiveWorkingBot or ActiveWorkingBot recovery are k11, k12, respectively.

The transition rates for the local model are constant, with the only excep-
tion of k∗1, which depends on the number of active propagation bots in the
environment, as more computers are actively spreading the virus the more of-
ten an infection occurs. We provide more information on the infection rate

Botnet case-study 31

Figure 3.2: A local model Ml of an individual computer.

when the global mean-field model is built and the information on the whole
population is available.

The obtained local model consists of seven states (Sl = {s1, . . . , s7}), where
each state represents a certain phase of the infection of a single computer. The
states are labeled as follows:
L(s1) = NotInfected, L(s2) = InitialInfection, L(s3) = ConnectedBot, L(s4) =
InactiveWorkingBot, L(s5) = ActiveWorkingBot,
L(s6) = InactivePropagationBot, L(s7) = ActivePropagationBot. The rate
matrix R of the local model Ml is as follows:

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k∗1 0 0 0 0 0
k3 0 k2 0 0 0 0
k6 0 0 k4 0 k5 0
k11 0 0 0 k7 0 0
k12 0 0 k8 0 0 0
k13 0 0 0 0 0 k9
k14 0 0 0 0 k10 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.1)

The generator matrix Q of size |Sl|×|Sl| can be computed from the rate matrix

32 3.3 Mean-field model of the botnet behaviour

k
1

R
at
eO

fA
tt
ac
k·P

ro
bI
ns
ta
llI
ni
ti
al
In
fe
ct
io
n

k
∗ 1

R
at
e
de
pe
nd
s
on

k
1
an
d
th
e
en
vi
ro
nm

en
t

k
2

R
at
eC
on
ne
ct
B
ot
T
oP
ee
rs
·P
ro
bC

on
ne
ct
T
oP
ee
rs

k
3

R
at
eC
on
ne
ct
B
ot
T
oP
ee
rs
·(1
-P
ro
bC

on
ne
ct
T
oP
ee
rs
)

k
4

R
at
eS
ec
on
da
ry
In
je
ct
io
n·P

ro
bS
ec
on
da
ry
In
je
ct
io
nS
uc
ce
ss
·(1
-P
ro
bP

ro
pa
ga
ti
on
B
ot
)

k
5

R
at
eS
ec
on
da
ry
In
je
ct
io
n·P

ro
bS
ec
on
da
ry
In
je
ct
io
nS
uc
ce
ss
·P
ro
bP

ro
pa
ga
ti
on
B
ot

k
6

R
at
eS
ec
on
da
ry
In
je
ct
io
n·(

1-
P
ro
bS
ec
on
da
ry
In
je
ct
io
nS
uc
ce
ss
)

k
7

R
at
eW

or
ki
ng
B
ot
W
ak
en
s

k
8

R
at
eW

or
ki
ng
B
ot
Sl
ee
ps

k
9

R
at
eP
ro
pa
ga
ti
on
B
ot
W
ak
en
s

k
1
0

R
at
eP
ro
pa
ga
ti
on
B
ot
Sl
ee
ps

k
1
1

R
at
eI
na
ct
iv
eW

or
ki
ng
B
ot
R
em

ov
ed

k
1
2

R
at
eA
ct
iv
eW

or
ki
ng
B
ot
R
em

ov
ed

k
1
3

R
at
eI
na
ct
iv
eP
ro
pa
ga
ti
on
B
ot
R
em

ov
ed

k
1
4

R
at
eA
ct
iv
eP
ro
pa
ga
ti
on
B
ot
R
em

ov
ed

T
ab
le
3.
1:

T
ra
ns
it
io
n
ra
te
s
fo
r
th
e
m
od
el
of
a
si
ng
le
co
m
pu
te
r.

Botnet case-study 33

as follows: for states s1 	= s2 Qs1,s2 is equal to the transition rate Rs1,s2 , i.e.
the probability to move from state s1 to state s2. For s1 = s2 Qs1,s1 is equal
to the negative sum of all the rates in row s1.

Recall that together the state space Sl, the generator matrix Q and the la-
belling function define the local mean-field model according to Definition 2.3.1.
The transition rates are fully available (including k∗1) when the global model
is built.

Once the model of a single computer is built, the overall mean-field model
MO can be constructed, as described in Section 2.1. The structure of the model
remains unchanged (see Figure 3.2), however, the state of the overall model
m = (m1,m2, . . . ,m7) represents the fraction of computers in each state of the
local model, where m1 corresponds to the fraction of NotInfected computers,
etc.

Given the overall model definition, the time or population-dependent trans-
ition rate can be chosen as in Example 2.2.2, where the botnet is “intelligent
enough” to target only not infected computers uniformly1:

k∗1(m(t)) = k1 · m7(t)

m1(t)
.

The system of ODEs, describing the transient behaviour of the global mean-
field model MO can be obtained based on Theorem 2.2.1 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ1(t) = k3m2(t) + k6m3(t) + k11m4(t)
+k12m5(t) + k13m6(t) + (k14 − k1)m7(t),

ṁ2(t) = −(k2 + k3)m2(t) + k1m7(t),
ṁ3(t) = k2m2(t)− (k4 + k5 + k6)m3(t),
ṁ4(t) = k4m3(t)− (k7 + k11)m4(t) + k8m5(t),
ṁ5(t) = k7m4(t)− (k8 + k12)m5(t),
ṁ6(t) = k5m3(t)− (k9 + k13)m6(t) + k10m7(t),
ṁ7(t) = k9m6(t)− (k10 + k14)m7(t).

(3.2)

The initial conditions m(0) have to be chosen before the calculation can be
started. We fix initial conditions later in this chapter.

1Note that the above modelling decision was made to match the existing SAN model
and may not completely reflect realistic botnet spreading.

34 3.4 Mean-field versus simulation

3.4 Mean-field versus simulation

In this section we discuss the results that have been obtained for this model
using the mean-field method in detail and compare them to the simulation
results we obtained by reproducing the SAN model given in [99]. We carried
out a similar series of experiments as in [99]; the chosen parameters for all
these experiments are given in Table 3.2.

As was mentioned before, the goal of this chapter is not to study the growth
of botnets under different conditions, but to compare the results obtained
from mean-field approximation with those obtained from simulations. Hence,
we compare results for a representative selection of experiments in order to
discuss the advantages and disadvantages of both approaches.

3.4.1 Simulation set-up

The model was simulated using the Möbius tool [31]. The initial conditions
for each experiment are as follows: 200 computers are located in the place
ActivePropagationBots in the SAN, and all the other places are empty. The
transition rates can be found in Table 3.2.

Note that the simulation results shown here differ from those in [99]. In
consultation with the authors of [99] we found a small mistake in the simulator
settings they used: because the rates in the SAN model are marking depend-
ent, a flag has to be set in the Möbius tool to ensure that the rates are updated
frequently. Not setting this flag can result in inaccurate numbers of propaga-
tion bots, as illustrated in Figure 3.3. The blue dashed line corresponds to the
mean number of propagation bots obtained from the unflagged simulation for
the baseline experiment (see Table 3.2). When the flag is not set the number
of computers in each place is not updated, which results in the overestimation
of the number of infected computers. Once the flag is set correctly the results
of the Möbius simulation match the mean-field results, as will be shown later.

We performed a number of experiments (see Table 3.2) in order to compare
the simulation of the SAN model with mean-field results. Each experiment
covered one week of simulated time and was replicated 1000 times. The mean
values and 95% confidence intervals of the measures of interest have been
obtained.

Botnet case-study 35

E
xp
er
im
en
ts

P
ar
am

et
er

ba
se
lin
e

1
2

3
4

5
6

P
ro
bI
ns
ta
llI
ni
ti
al
In
fe
ct
io
n

0.
1

0
.0
6

0
.0
4

0.
1

0.
1

0.
1

0.
1

P
ro
bC

on
ne
ct
T
oP
ee
rs

1
1

1
1

1
1

1
P
ro
bS
ec
on
da
ry
In
je
ct
io
nS
uc
ce
ss

1
1

1
1

1
1

1
P
ro
bP

ro
pa
ga
ti
on
B
ot

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

R
at
eO

fA
tt
ac
k

10
.0

10
.0

10
.0

10
.0

10
.0

10
.0

10
.0

R
at
eC
on
ne
ct
B
ot
T
oP
ee
rs

12
.0

12
.0

12
.0

12
.0

12
.0

12
.0

12
.0

R
at
eS
ec
on
da
ry
In
je
ct
io
n

14
.0

14
.0

14
.0

14
.0

14
.0

14
.0

14
.0

R
at
eW

or
ki
ng
B
ot
W
ak
en
s

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

0.
00
1

R
at
eW

or
ki
ng
B
ot
Sl
ee
ps

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

R
at
eP
ro
pa
ga
ti
on
B
ot
W
ak
en
s

0.
00
1

0.
00
1

0
.0
01

0.
00
1

0
.0
01

0.
00
1

0.
00
1

R
at
eP
ro
pa
ga
ti
on
B
ot
Sl
ee
ps

0.
1

0.
1

0
.1

0.
1

0
.1

0.
1

0.
1

R
at
eI
na
ct
iv
eW

or
ki
ng
B
ot
R
em

ov
ed

0.
00
01

0.
00
01

0.
00
01

0.
00
1

0
.0
01

0.
00
1

0.
00
1

R
at
eA
ct
iv
eW

or
ki
ng
B
ot
R
em

ov
ed

0.
01

0.
01

0.
01

0.
01

0
.0
1

0.
01

0.
01

R
at
eI
na
ct
iv
eP
ro
pa
ga
ti
on
B
ot
R
em

ov
ed

0.
00
01

0.
00
01

0.
00
01

0.
00
1

0
.0
01

0.
00
1

0.
00
1

R
at
eA
ct
iv
eP
ro
pa
ga
ti
on
B
ot
R
em

ov
ed

0.
01

0.
01

0.
01

0
.0
7

0
.0
4

0
.0
2

0
.0
1
5

T
ab
le
3.
2:
T
he

se
tu
ps
fo
r
th
e
di
ffe
re
nt
ex
pe
ri
m
en
ts
.
B
ol
d
fo
nt
in
di
ca
te
s
di
ffe
re
nc
e
w
.r
.t
.b
as
el
in
e
ex
pe
ri
m
en
t.

36 3.4 Mean-field versus simulation

0 50 100 150
0

100000

200000

300000

400000

500000

600000

700000

Time HhoursL

Pr
op
ag
at
io
n
B
ot
s

flaggedsimulation
mean-field
unflaggedsimulation

Figure 3.3: Number of propagation bots over time: blue solid line represents
the mean value obtained from the Möbius simulation before the rates-updating
flag was set; black bars correspond to the 95% confidence intervals obtained
from the Möbius simulation with the flag set; red solid line shows the results
obtained from mean-field approximation.

3.4.2 Mean-field setup

We use Wolfram Mathematica [103] to obtain solutions for the set of differential
equations (3.2) coupled with the transition rates from Table 3.2. To obtain
the same initial conditions for the mean-field model as for the SAN model we
need to take the NotInfected state in the local model into account. As in the
SAN model the population size is not bounded, the number of not infected
computers has to be set to infinity, however, in our model we limit the size of
the population, which is closer to the reality, as in practice the total number of
computers is finite. Therefore, we set the size of the population for mean-field
model large, but finite. Given an overall population of N = 1010, the fraction
of computers in the state NotInfected is initialized as m1(0) = (N − 200)/N ,
the fraction of computers in the state ActivePropagationBot is initialized as

Botnet case-study 37

m7(0) = 200/N , and the fractions of computers in all other states are initialized
as zero.

3.4.3 Number of propagation bots (baseline)

Figure 3.3 shows the number of the propagation bots in a botnet. The number
of propagation bots (both active and inactive) has been taken as measure of
interest since they actively infect “healthy’’ computers.

The red solid line depicts the mean-field results of the baseline experiment
together with the 95% confidence intervals of the “flagged” Möbius simulation.
As can be seen, the mean-field results are very accurate in this case, since they
lie mostly within the confidence intervals, even though the confidence intervals
are very narrow.

The blue dashed line represents the mean value of the original Möbius sim-
ulation from [99]. Comparing the original Möbius results with the new results
from the correct simulator setting reveals that the number of propagation bots
(both active and inactive) differs from the results stated in [99]. During the
first fifty hours the unflagged simulation provides slightly lower results (about
20%), however, on the scale of the figure this difference is hardly noticeable.
Starting from fifty hours, the unflagged simulation over-estimates; after a week
(168 hours) the difference is about 42% (754755 versus 440073). Note that the
simulation takes longer than 5 days of runtime, as opposed to 1 second for the
mean-field method. We come back to this at the end of the section.

3.4.4 User factor (Experiments 1-2)

To investigate the influence of users on the growth of botnets, Experiments 1
and 2 have been done in [99]. The ProbInstalInfection is reduced to 60% and
40%, respectively, as compared to the baseline experiment, to represent a lower
probability of, e.g., opening infected files. The results are presented in Figure
3.4, together with those from the baseline experiment. A logarithmic scale has
been chosen for the number of propagation bots, in order to better visualize
the exponential growth. For both experiments, the results obtained with the
mean-field model are again very accurate and lie well within the confidence
intervals most of the time.

38 3.4 Mean-field versus simulation

0 50 100 150

1000

104

105

Time HhoursL

Pr
op
ag
at
io
n
B
ot
s

Möbius 95% conf . intervals
Experiment 2
Experiment 1
Baseline experiment

Figure 3.4: Number of propagation bots over time in the baseline experiment
and in Experiment 1 and 2 obtained from Möbius simulation and from mean-
field analysis.

3.4.5 Removal rate (Experiments 3-6)

To investigate how efficiently anti-malware software can control or even stop
the botnet spread, experiments with increased removal rates have been done in
[99]. To compare both of the approaches, we conducted a series of experiments,
where the removal rate of active propagation bots varies between 0.01 and 0.1.
The mean-field approximation provides an explicit result, which in most of the
cases lies well within the 95% confidence intervals (see Figure 3.5).

3.4.6 Observation about the method

At first sight the high accuracy of the analytical results might be surprising,
since the underlying assumption of mean-field approximation is that the num-
ber of interacting components is large. However, apparently in Experiment 3
(cf. Figure 3.5) the initial set of active propagation bots hardly gets a chance
to infect more computers before being disinfected themselves. In terms of the

Botnet case-study 39

0 50 100 150

0.1

0.5
1.0

5.0
10.0

50.0
100.0

Time HhoursL

Pr
op
ag
at
io
n
B
ot
s

Möbius 95% conf . intervals
Experiment 3
Experiment 4
Experiment 5
Experiment 6

Figure 3.5: Number of propagation bots over time in Experiments 3, 4, 5, and
6, obtained from Möbius simulation and from mean-field analysis.

local model, it means that the transition from the state NotInfected to the
state InitialInfection is taken by (almost) none of the computers. This trans-
ition happens to be the only one whose rate depends on the environment; if we
remove it from the local model, we obtain a CTMC with constant rates. The
ODEs (3.2) of the global model that result from such population-independent
local model are easily seen to be the Kolmogorov differential equations, whose
solution is the probability distribution over the states of the CTMC as a func-
tion of time.

Also, removing this transition in the SAN simulation model reduces it to a
set of many independent CTMCs. Taking the number of markings (number of
objects) per state as a function of time, and dividing by the total, obviously
results in an unbiased estimate of the probability distribution of the local model
in the course of time. Thus, clearly the two approaches should match, as they
in fact do and this explains why the mean-field results are still accurate, even
though in this case the overall number of components is small.

40 3.4 Mean-field versus simulation

Experiment Simulation Mean-field
Baseline 5 d 3 h 25 min 1 sec
Exp. 1 9 h 51 min 1 sec
Exp. 2 5 h 37 min 1 sec
Exp. 3 31 min 1 sec
Exp. 4 40 min 1 sec
Exp. 5 45 min 1 sec
Exp. 6 36 min 1 sec

Table 3.3: Time spent on simulation and mean-field approximation.

It is interesting that the confidence intervals in Experiment 6 are much
narrower than the ones in Experiment 3. As the average number of propagation
bots decreases over time, the confidence intervals seem to get wider on the
logarithmic scale (see Figure 3.5). In fact, however, the absolute width of the
intervals gets smaller, but less quickly than the estimate itself. The reason for
this is that the actual number of propagation bots always is a non-negative
integer; therefore, when the estimated average decreases far below 1, it must
be the average of many 0’s and a few 1’s (or even fewer higher integers). Such
an estimate inherently has a large coefficient of variation; in fact, this is the
main problem of rare-event simulation, cf. [53].

Another thing to remark about these experiments, is that when the number
of propagation bots reaches 0, and there are also no bots in the states InitialIn-
fection and ConnectedBot anymore, no new infections can occur. The number
of propagation bots will then remain 0. Thus, when the graph indicates that
after a week the average number of propagation bots is about 0.01, this means
that in most (about 99%) of the simulation runs the botnet is extinct and will
stay so, while only a few runs still have some botnet activity.

3.4.7 Run time

In Table 3.3, the computer run times for the simulation and for the mean-
field computation are compared. The results have been obtained on a Core-
i7 processor with 3 GB RAM and 4 cores and hyper threading. One sees
that the simulation can take a very long time, namely up to several days,
while the mean-field approximation is always done within one second. The
difference between the simulation time for the different experiments is due to

Botnet case-study 41

the marking dependency of the rates. For example, in the baseline experiment
the number of ActivePropagationBots is large, hence, the rate of infection
becomes very large and more time is needed to simulate the resulting large
number of events. The time spent on the simulation of the experiments with
lower numbers of computers involved is reasonably smaller; however the mean-
field approximation is still much faster in all cases. In any case, the simulation
times should only be taken as indications, since the simulations have not been
run completely independently, but in parallel pairs on a 4-core computer, so
the jobs may have interfered with each other.

3.5 Exploiting the speed-up

In the previous section we have shown how fast and efficient the mean-field
method is (cf. Table 3.3) and that the obtained approximation is quite ac-
curate. This allows to use the-mean field method to address problems which
are not feasible using simulation. In this section we discuss two types of such
problems:

1. The dependence of botnet spread on two (or more) parameters.

2. The cost constraints involved in the botnet behaviour.

In the following we illustrate how mean-field method can be used to analyse
broad variety of properties.

3.5.1 Removal rates of active and inactive bots

The removal (disinfection) mechanisms for inactive and active bots differ, and
while active bots are relatively easy to identify, detection of inactive bots is a
bigger challenge. However, infected bots are programmed to stay active very
shortly and remain inactive most of the time, therefore, increased detection
rate of active bots while inactive bots left out of the control, might not be
enough to control the speed of the botnet propagation. Hence, the question of
how to distribute the effort/money in controlling botnet stays open. We will
investigate three possibilities:

• improve the deactivation of the active bots (relatively easy);

• improve the deactivation of the inactive bots (more difficult);

42 3.5 Exploiting the speed-up

Figure 3.6: Number of propagation bots for (k13, k14) ∈ [8 · 10−5; 10−3] × [8 ·
10−3; 10−1] at time T = 3 days, all other parameters are the same as for the
baseline experiment (see Table 3.2).

• find the best combination of the two previous ways.

The authors of [99] used time-consuming simulation to show in a couple of ex-
amples that there is no considerable difference in increasing the detection/deac-
tivation of active or inactive bots (namely increasing the removal rates k11, k13
or k12, k14). The mean-field method allows to make the analysis faster and to
obtain more information. We, therefore, are able to access the dependence of
number of propagation bots as defined by Equation (3.2) on two removal rates.
It is done by fixing the initial conditions and twelve parameters to the baseline
values (see Table 3.2), and let the two remaining parameters change, namely
k13 ∈ [8 · 10−5; 10−3] (for inactive propagation bots) and k14 ∈ [8 · 10−3; 10−1]
(for active propagation bots). Figure 3.6 depicts the dependence of number
of propagation bots in the network in three days after the botnet started to
spread on two parameters, namely k13 and k14.

As one can see, Figure 3.6 is symmetric with respect to the two chosen
parameters, therefore, there is indeed no considerable difference in a system
behaviour when either of the two parameters is slightly increased. The peak in
the Figure corresponds to the rates in the baseline experiment, and increasing
removal rates k13 and k14 have an identical impact on (decreasing) the number

Botnet case-study 43

of propagation bots in the system in three days time.
As was discussed before, inactive computers are much harder to detect

(increasing k13 is more difficult), therefore the above results might help the
developers of anti-virus software to choose a better strategy for botnet removal,
namely, the first strategy, which focuses on the easier task of detecting active
bots.

The results presented above have been obtained using Wolfram Mathem-
atica, and the execution time equals 2.61 minutes, while only one simulation
for a given set of parameters might take between 36 minutes and 5 days (see
Table 3.3).

3.5.2 Cost introduced by the botnet

Next, we introduce a cost concept to analyse the economical side of infection
spread. Two types of costs are considered:

• the cost of a computer being infected, that occurs for example due to the
loss of information or productivity;

• the cost of more frequent checking with antivirus software or updating
it.

On the one hand the number of infected computers and, hence, the cost grows
if computers are not frequently checked. On the other hand, if computers
are checked too often the botnet is not growing, but running the antivirus
software becomes very expensive. We analyse this trade-off in more detail in
the following. We calculate the cumulative cost as follows:

C(t0, t1, RR,D1, D2) =
∫ t1
t0
(D1 · InfBots(t, RR)+

D2 ·RR ·N) dt,
(3.3)

where (from the left to the right)

• RR is the change in removal rates k11, ..., k14 with respect to the rates
in the baseline experiment, i.e. k11 = RR · k11,baseline and similarly for
k12, k13, k14;

• D1 is the cost of infection;

• InfBots(t, RR) is the number of infected computers for a given RR, at
time t, including active and inactive working and propagation bots;

44 3.5 Exploiting the speed-up

Figure 3.7: Cost of the system performance for D1 = 0.01, D2 = 4 · 10−5, and
RR ∈ [0.001; 5].

• D2 is the cost of checking one computer, which probably is much lower
than the cost of infection (D1);

• N is the number of all computers in the system.

Figure 3.7 depicts how the introduced cumulative cost changes over time for
varying removal rates, that change with factor RR ∈ [0.001; 5]. The involved
costs are chosen as such in order to illustrate that infection is “more expensive”
than running/updating antivirus, namely, D1 = 0.001 and D2 = 4 · 10−5.

For low removal rates (RR between 0 and 1) the cost grows exponentially
with time due to the fact that the number of infected computers is large as
they are not removed from the network fast enough. The loss of productivity
(cost) is highest for RR = 0.001.

High removal rates (RR between 5 and 10) introduce a linear dependency
of the cumulative cost on time and RR since the network is checked “too often”.

The “valley” between RR = 2 and RR = 4 corresponds to the best strategy,
when the network is checked frequently enough to prevent the spread of the
botnet, but not “too often” to introduce extra cost (loss of productivity).

We see that the mean-field method can be easily used for finding the re-
moval rates which minimize the cost at a given moment of time. It can help net-
work managers with careful decision-making, based on the situation at hand.

Botnet case-study 45

Even though not all parameters might be known in reality, such analysis can
help to obtain a better understanding of the characteristics of botnet spread.
The speed-up that was gained by applying mean-field method is again con-
firmed by the time needed for the calculation. Although the time spent on
integration of the cost function is 20.5 minutes, it is indeed a great improve-
ment compared to the simulation time as in Table 3.3, where the simulation
for a fixed set of parameters took at least 36 minutes.

3.6 Concluding remarks

In this chapter we compared different approaches for evaluating a peer-to-
peer botnet spreading. We have shown that the mean-field approach is much
faster than simulation, taking about 1 second instead of minutes to days of
computation time. The results from the mean-field analysis match those from
the simulation very well, being mostly inside the 95% confidence interval.

Due to the speed-up of the mean-field method we have been able to ad-
dress various questions which cannot practically be answered with simulation,
such as questions involving cost trade-offs; this is useful in typical engineering
applications. One can think of other questions to address, however our aim
was to show the potential of the method by addressing problems which can
not be solved using simulation.

In general, the mean-field method is only a first-order approximation to
the real Markov chain model, which becomes better as the number of entities
involved increases. However, in the present case-study we did not observe any
significant difference between the mean-field results and the simulation results
of the full model. In contrast to the mean-field approximation, the precision of
the simulation results suffers when the mean number of bots being estimated
gets closer to zero. This is because the standard deviation does not go to zero
as fast as the mean value.

The present research shows the usefulness of the mean-field approach, as
it is able to provide very accurate results very quickly. However, even in cases
where mean-field results are less accurate for small population numbers, it can
be useful as a quick check of the simulation. In fact, the simulator setting
problem discussed in Section 3.4 was found due to the mismatch with the
mean-field results.

Part II

Parameter Fitting

M odel-based system evaluation allows to study system behaviour prior to
implementation. However, it often suffers from the lack of realistic system
parameters. This is particularly so for large scale distributed systems, like
applications running in the internet, for which a structured measurement set-
up is very difficult to achieve, or even impossible to obtain. This is particularly
the case when studying attacks launched via the internet, like computer worms.

This part aims to obtain a better understanding of the spreading phase
of a computer worm, and does so by combining a mean-field model of worm
behaviour with parameter fitting techniques, and illustrates this on the case of
Code-Red worm. We explain how to build a mean-field model of the worm,
and how to estimate the corresponding parameters, so as to find the best fit
between the available data and the model prediction. We also discuss a number
of intricate technical issues, ranging from the additional (preprocessing) work
to be done on the measurement data, the interpretation of the data; to, for
instance, a restructuring of the model (based on data unavailability), that has
to be performed before applying the parameter estimation procedures. The
presented model and parametric study is, as far as we know, the most detailed
study of the spreading phase of Code-Red.

This part is further organized as follows. In Chapter 4 the motivation of
the case-study, background information on parameter estimation, and related
work are presented. Chapter 5 provides the set-up of the case-study, including
history of the Code-Red, available data, and mean-field model of Code-Red
spread. Chapter 6 provides the results of the Code-Red case-study and con-
cluding remarks.

4

Parameter estimation for
mean-field models

With this chapter we provide background information on the case-study based
on Code-Red worm. We first motivate the case-study in Section 4.1. Then in
Section 4.2 the techniques, used for the parameter estimation, are described.
The overview of related work is done in Section 4.3. Section 4.4 concludes this
chapter.

4.1 Motivation

In Part I of this thesis we performed a (mean-field) model-based evaluation
of a peer-to-peer botnet. In doing so, we provided insight in the behaviour
of the botnet. Over the last few years, there has been an interest in better
understanding the way computer viruses spread, for instance using simulation
or simple differential equation models, cf. [88], [99], [108]. Following such a
model-based approach, in general, helps to understand systems under varying
circumstances, e.g., the transient behaviour of the system, periodicity, the
long run system behaviour, how stable the system is under the influence of the
environment, etc. Sometimes also effects of countermeasures can be evaluated,
by changing the parameters that impact the effectiveness of countermeasures
(see, e.g., Sections 3.4 and 3.5).

Despite the fact that model-based evaluation is widely used for real systems,
it often suffers from the lack of realistic parameters. The latter is due to the
fact that parameter values closely (or absolutely) reflecting the real system
behaviour are difficult to obtain. To ensure that the model complies with the
system, parameters can be assigned by, for example, one (or combination) of
the following methods:

52 4.1 Motivation

1. Predefined experimental settings. The experiment is set in a predefined
environment with the predefined parameters, i.e., the system is set up
to behave in a certain way. In this case the assigned model parameters
exactly reflect the system behaviour. However, the system is evaluated
in an experimental, or so-called “synthetic”, settings (e.g., in a local
network), which might be not 100% realistic.

2. Analysis of a system. Obtaining inside information on the system, for
example, by analysing the code of the computer virus. In most cases such
analysis does not allow assigning values to all parameters of the model of
this system, as information is not sufficient. It is possible to see how the
system is supposed to behave, however, the influence of the environment
can not be seen.

3. Using measurements. In this case the real system behaviour is meas-
ured and the parameters are approximated based on the obtained data.
Various estimation techniques can be used to assign realistic parameter
values.

In this part of the thesis we follow Method 3, that is, we discuss how meas-
ured data can be used to obtain the parameters of a mean-field model. In gen-
eral terms, there exist a number of parameter estimation techniques, such as,
least squared error [1], maximum likelihood [78], generalized maximum spacing
estimates [38], generalized method of moments [48], etc. These methods are
widely used in application areas such as biochemical reactions [76], computer
vision [106], cosmology [73], etc. We will use two well-known parameter es-
timation methods, namely, least squared error [1] and maximum likelihood [78]
for this case-study. The above two methods are chosen because they are com-
monly used in the fields, where models, similar to the mean-field model are
used, for example, in system biology or chemistry.

Unfortunately, many real systems can not be properly measured, which
limits the possibilities to match the model output to the real system beha-
viour. Moreover, even if measurement data is available in some form, it is
often difficult to obtain meaningful parameters, as the data is often only par-
tially available, or the performed measurements do not match the needs of
the model. This is exactly the challenge we encountered when trying to para-
metrise our mean-field models, and about which we report in this part of the
thesis.

Parameter estimation for mean-field models 53

We will use the mean-field approach to model the spreading phase of a
computer worm, in particular, the Code-Red worm [77], and measurement
data in combination with the two aforementioned parameter fitting techniques
to assign the parameters of the obtained mean-field model.

The aim and contribution of the current case-study is threefold. First of
all, the study shows how a single behavioural model of a virus can be used
as basis for modelling virus spread, using the mean-field approach. Secondly,
the study illustrates that such a model can be parametrized well, based on
measurements performed during the outbreak, using standard parameter es-
timation techniques, provided the measurements are very carefully dealt with.
Third, and maybe most importantly, this part of the thesis discusses the chal-
lenges encountered when performing such a detailed modelling study, in which
the measurements, when studied in detail, show all sorts of artefacts that are
easily overlooked, but do have a substantial impact on the estimation proced-
ure. Hence, the contribution of this case-study not only lies in the final fitted
model, but also in the description of the process to come to this model.

4.2 Parameter estimation procedures

In this section two parameter estimators are discussed. Let us first introduce
some notation.

The measured data is represented by the trace O(tr), where tr is a time
stamp for each element of the trace, i.e., the time when value O(tr) was ob-
served; r ∈ {1, . . . , R}, and R is the size of the data trace. For simplicity of
notation we assume that there is one trace of data available. In Table 4.1 an
example of a data trace is presented, where the size of the data trace R = 8, the
data was measured once per unit of time, therefore, t1 = 1, t2 = 2 . . . tR = 8,
and the observed values are O(t1) = 1,O(t2) = 2 . . .O(tR) = 9 as given in the
right hand column.

For validation of the obtained results we introduce the vector of number of
hosts in each state M(t) instead of the fractions m(t). In this case we reverse
the normalization step (see Section 2.1) in order to come back to the actual
number of hosts per state of the local model, which makes it easier to compare
the real data with the output of the model:

M(t) = N ·m(t). (4.1)

54 4.2 Parameter estimation procedures

Timestamps Observation
1 1
2 2
3 6
4 2
5 8
6 1
7 3
8 9

Table 4.1: The example of the trace of a data.

Note, however, that vector M(t) does not necessary contain integer numbers,
as it is obtained from the mean-field model, where fractions of objects are
evaluated. The above notation will be used when addressing the measured
data.

The data trace O(tr) is compared to the output of the mean-field model
MO, more precisely, to the number of objects in a corresponding state of the
local model, Mi(tr) at the time, the observation was made. The parameters of
the mean-field model to be estimated are denoted as λ1, . . . , λP .

There exist several measures of quality, which describe how good observa-
tion data fits to a model. One of the simplest and therefore popular measures
is the squared error [1]. The squared error measures the squared euclidean
distance between the model prediction and the actual data at the respective
observation time points, and is defined as follows:

E =
R∑

r=1

||O(tr)−Mi(tr)||2. (4.2)

The squared error obtained from Equation (4.2) has one disadvantage, namely,
it represents the result in the actual values, which might be inconvenient due to
the different orders of magnitude of the observations. For example, a squared
error of 35 is quite big when the mean of the observed data is in the order of
102, however, the same value is considered very small for data with mean value
in order of 109. Therefore, it is more useful if the measure of interest would not
show the difference between the observation and model output, but how big

Parameter estimation for mean-field models 55

this difference compared with the mean value of the observed data. To obtain
such measure of interest, which allows us to better understand how close the
data is compared to the prediction of the model, is the relative squared error
(0 ≤ Erel ≤ 1), defined as in [102]:

Erel =

∑R
r=1 ||O(tr)−Mi(tr)||2∑R

r=1 ||O(tr)− Ô||2 , (4.3)

where Ô is the squared error of the default (simplest) predictor (or just the
average of the actual data) [102]. Note that the relative squared error becomes
independent of the nature of the data, unlike the squared error in (4.2).

To guarantee the best fit the parameters that minimize the relative squared
error have to be found, i.e., we need to find

λ∗
1, . . . , λ

∗
P = argmin

λ1,...,λP

Erel. (4.4)

Another way to measure the estimation quality is the so-called likelihood [78].
Assume that the observations contain a normally distributed error with mean
zero and variance σ2. Formally, we then have

O(t) = Mi(t) + ε,

where ε ∼ N (0, σ), and therefore O(t) is distributed as N (Mi(t), σ). Thus,
the density of observing O(t) given a real value mi(t) is given by

f(O(t) | Mi(t)) =
1√
2πσ2

e−
(O(t)−Mi(t))

2

2σ2 . (4.5)

If in addition we assume that all observations are statistically independent,
we can define the likelihood L as the density of observing the data given the
current model output:

L =
R∏

r=1

f(O(tr) | Mi(tr)). (4.6)

To obtain the parameter valuess which will fit the model output best according
to the observed data, the likelihood has to be maximized, i.e., we have to find

λ∗
1, . . . , λ

∗
P = argmax

λ1,...,λP

L. (4.7)

56 4.2 Parameter estimation procedures

In order to simplify and unify the computation, we define the negative log-
likelihood L∗ as

L∗ = −
∑R

r=1 log f(O(tr) | M(tr))

R
. (4.8)

The negative log-likelihood is divided by the length of the data trace R in order
to make it independent of the length of the data. We minimize it in order to
find the best estimates:

λ∗
1, . . . , λ

∗
P = argmin

λ1,...,λP

L∗. (4.9)

Compared to Erel, L∗ has an extra factor, namely the variance σ2. If the
variance (or standard deviation) is set to 1 we expect that the optimization
of both measures of quality yields the same results, however, the variance can
be seen as an extra parameter in the optimization process, which potentially
might help to yield better results. In this case we have to find

λ∗
1, . . . , λ

∗
P , σ

∗ = argmin
λ1,...,λP ,σ

L∗. (4.10)

We discuss this possibility in Section 6.3.
Given the two measures of quality, the minimization is the last step in

finding the model, which fits best. There exist a number of methods which can
be used to find the global minimum of a given function [78]:

• Analytical method. With this method we find the derivatives of the meas-
ure of quality with respect to the parameters and set the resulting gradi-
ent to zero. After finding extrema we find which of these is a minimum
using the second derivative. This method is rarely used, as the analytical
solution is often not available.

• Grid search method. With this method one repeatedly tries each possible
value of the parameters in a predefined region, and finds the parameters
which give the minimum value of the measure of quality. This method
is not practical when the number of parameters grows beyond 2 or 3.

• Numerical method. The most common methods employ numerical al-
gorithms for finding the minimum, such as available in, e.g., MAT-
LAB’s optimization toolbox [75] or Wolfram Mathematica Optimization
Tools [105]. These tools use more advanced methods, than mentioned
above grid search.

Parameter estimation for mean-field models 57

In the following we use numerical methods for finding the minimum squared
error and the negative log-likelihood. We exploit the Wolfram Mathematica
Optimization function NMinimize [104] to minimize the measures of quality.
This function always attempts to find a global minimum of a given measure of
quality subject to the given constraints, and it can employ one of the follow-
ing numerical methods: Nelder–Mead method [79]; differential evolution [93];
simulated annealing [60]; or random search [107]. The accuracy and number
of iterations can be altered in order to obtain the best solution and the desired
precision. We discuss the application of the above methods to the Code-Red
case study in Capter 6.

4.3 Related work on parameter estimation

4.3.1 Differential equation model

To the best of our knowledge, parameter estimation techniques have not yet
been applied to mean-field models before. However, such techniques have been
used for estimating parameters of differential equations. For example, in [101]
differential equations are promoted as an important tool in studying chemical
reactions. Note that, the assumptions made for obtaining such equations are
very similar to these made when building models for large population system
using the mean-field approach. The author of [101] proposes to use techniques
based on squared error to estimate parameters of the obtained differential equa-
tions and presents evidence that this method works well for these equations.

More advanced techniques for obtaining the parameters of differential equa-
tions were proposed. For example, [84] proposes the parameter cascade al-
gorithm that combines data smoothing and a generalization of profiled estima-
tion [10]. The proposed algorithm is shown to yield results at least as good as
other approaches, and rather better than estimation based on squared error.
Another advantage of the algorithms is that initial conditions of the differential
equations do not need to be set in advance.

4.3.2 Hybrid Markov population models

Authors of [91] have illustrated the way to assess the arrival rates for system
of many servers with a time varying load from real data. Although estimating
the parameters of the model was not the main focus of the above paper, we
briefly discuss it here, as it is closely related to the goals of our case-study.

58 4.3 Related work on parameter estimation

The mean-field method was used to model the behaviour of a system with
a large number of services. A widely analysed dataset of all entries to the
World Cup 1998 website [3] shows how the website was accessed during its
lifetime. This dataset was used to approximate the arrival rates for the mean-
field model, which were set to be a piecewise constant function with values
equal to the average number of accesses during each hour (as was available in
a dataset).

Although the approach used in [91] shows how some of the parameters of
a mean-field model can be estimated using measurements, it is different from
the methods used in our case-study. It uses the data directly, by obtaining
the mean values, while in this thesis we perform parameter estimation by
minimizing the difference between the model prediction and the measured data.
Note that the approach used in [91] is applicable for a limited number of case-
studies and only for some of the parameters, while using parameter estimation
techniques all parameters values can be assigned if enough data is available.

4.3.3 Code-Red worm

The data used in our study was collected and studied by The Cooperative
Association for Internet Data Analysis (CAIDA); the results were presented
in [77] where the background of the worm as well as the details of the data
collection were discussed. This paper provides insights in the infection and
deactivation processes. Moreover, geographical locations and types of the dif-
ferent infected hosts were studied. The authors conclude that at July 19th
between 11:00 and 16:30 UTC the infection grows exponentially (citing the
work of Staniford [88]). However, no formal model of the worm is provided.

In the following chapters we will introduce the mean-field model for the
Code-Red worm and use parameter estimation techniques to assign meaning-
ful parameters to the obtained model. In the past other researchers have
modelled this worm with different methods, however, there are similarities in
the assumptions made, which confirms the suitability of the proposed model.

4.3.3.1 Epidemiological model

In the work of Staniford [88], a model is proposed to explain the infection rate of
the Code-Red worm. The proposed model is very similar to an epidemiological

Parameter estimation for mean-field models 59

model, and is built on the same principles as explained in Chapter 2:

da/dt = K · a · (1− a),

whereK is the infection rate of one compromised machine, and a is the fraction
of compromised machines. This model is explained as follows: each of the a
infected machines is able to compromise K machines per unit of time while
only 1 − a machines are not infected yet. Moreover, the author provides a
manually made fit to the data, obtained from [37]. The parameter K was
obtained manually, and no formal explanation was provided.

4.3.3.2 Two-factor worm model

Another model of Code-Red worm propagation was proposed by Zou et al. [108].
The proposed model was based on the classical epidemiological model, which is
modified in order to provide a better accuracy. The so-called two-factor worm
model includes two additional aspects:

• human countermeasures against worm spreading (patching, rebooting,
etc.);

• slowing down of the worm infection rate due to the worm’s impact on
internet traffic and infrastructure.

Adding these factors allowed to explain the slowing down of the worm spread
before midnight of July 19, 2001 (we discuss this in more detail in Section 5.4).
The two-factor worm model is as follows:⎧⎪⎪⎨⎪⎪⎩

dS(t)/dt = −β(t) · S(t) · I(t)− dQ(t)/dt,
dR(t)/dt = γ · I(t),
dQ(t)/dt = μ · S(t) · J(t),

β(t) = β0 · [1− I(t)/N]n,

where N = S(t) + I(t) + R(t) + Q(t), I(0) = I0 � N ;S(0) = N − I0;
R(0) = Q(0) = 0, and S(t), I(t), R(t), and Q(t) are the number of susceptible,
infectious; removed from infected, and from susceptible hosts1, respectively.

This model was compared against the data collected on July 19, 2001 (again
for the number of infected machines only). The outcome of the model did fit
the data well for the proposed parameter set. However, no evidence on the
source of the chosen parameters was provided.

1The rest of the notation can be found in Table 1 of [108].

60 4.4 Summary

4.4 Summary

In this chapter we argued that existing model-based evaluation techniques
might benefit when combined with parameter-estimation methods. We briefly
described two parameter estimation techniques, which will be used in this part
of the thesis. We provided related work on parameter estimation for differential
equations, and mean-field models. Moreover, we discussed related work on the
Code-Red virus, which will be used is this case-study.

5

Code-Red worm model and
available data

In this chapter we present a case-study, based on the Code-Red worm. In
Section 5.1 we recall the main properties of the worm and its history. A mean-
field model which describes the Code-Red attack is presented in Section 5.2.
In Section 5.3 we discuss the data provided by The Cooperative Association
for Internet Data Analysis (CAIDA). The proposed model is re-assessed in
Section 5.5 in order to match the available data and the model.

5.1 Code-Red. Introduction

On June 18, 2001, information about a buffer-overflow vulnerability in Mi-
crosoft’s Internet Information Server IIS web servers was released by eEye [13],
which was followed by a Microsoft patch eight days later [36]. On July 12, 2011,
the Code-Red worm version 1 (further referred as CRv1) started to spread by
exploring this vulnerability. There was no direct damage from CRv1, except
for the following message:

Welcome to http://www.worm.com!
Hacked by Chinese!

which was displayed on the home pages of some infected servers. CRv1 did not
spread widely due to the static seed in the pseudo-random number generator,
which caused the worm to scan (try to infect) a list of machines (servers) which
was identical for each infected host. The only tangible effects were visible in
local networks due to the additional resources consumed on infected hosts; the
impact on global resources was negligible.

62 5.1 Code-Red. Introduction

Following CRv1 on July 19, 2011, at approximately 10:00 UTC, Code-Red
version 2 (further referred as CRv2) started to spread. It appears that unlike
CRv1, CRv2 used a random seed in its random number generator. Therefore,
each of the infected machines tried to infect a different list of randomly gener-
ated IP addresses at an observed rate of, approximately, 11 probes per second.
Although the worm did not cause any direct damage, again apart from the
“Hacked by Chinese” message, CRv2 had a major impact on productivity loss
due to the huge number of infected hosts and probes sent. It infected between
1 and 2 million computers out of a possible 6 million, which is approximately
the number of existing IIS servers at that time [100]. Moreover, since the lists
of IP addresses to infect were drawn randomly, CRv2 was sending probes not
only to vulnerable IIS web-servers, but to all kinds of hosts; although these
could not be infected as such, they could crash or reboot under the attack. It
was the most costly malware of 2001, which resulted in total cost of approxim-
ately $2.75 billion [100], including costs of clean-up. Code Red was deemed by
the FBI to be so dangerous that it could bring down the entire Internet due
to the increased traffic from the scans.

Both versions of Code-Red were programmed to take identical actions when
infecting new machines. First the system clock was checked and then one of
the following actions was chosen accordingly:

• Spreading phase. If the date is between the 1st and the 19th of each
month the worm generates a random list of IP addresses and tries to
infect as many machines in this list as possible by performing port 80
TCP SYN scanning. The request contains code that exploits a known
buffer overflow vulnerability in the indexing software in Microsoft’s IIS,
allowing the worm to run code from within the IIS server.

• Attacking phase. If the date is between the 20th and the 28th the
worm stops spreading and starts a Denial-of-Service attack against the
following IP address: 198.137.240.91, which used to be the IP address
of www.whitehouse.gov. These attacks flooded the servers with so much
useless data that they were unable to function properly [12]. Luckily, the
attackers addressed the whitehouse.gov by IP address and not by URL.
The problem was solved by moving the website to another IP address.
If the attackers would address whitehouse.gov by the URL then URL
would have had to be changed to mitigate the attack.

Code-Red worm model and available data 63

• Inactive phase. The worm is inactive after the 28th of each month. It
cannot be wakened and stays in sleep mode unless deliberately executed.

Note that the employed system clock call returns UTC time [90], therefore,
all hosts switch between these three phases simultaneously, unless a host is
malfunctioning, e.g., the system clock is set wrong. The Code-Red worms are
both vulnerable to system rebooting, which means that the infected machine
is disinfected when rebooted, however, the machine remains vulnerable. The
only way to protect a machine is by applying a patch, which was made available
as of June 26, 2001.

The CRv2 worm was able to cause major damage within the 14 hours
it was spreading; at midnight of July 20th it stopped spreading, as it was
programmed to. On August 1, 2001, the worm started to spread again, and
by midnight approximately 275,000 unique hosts were infected (as indicated
by the available dataset [96]).

5.2 CRv2 mean-field model: first attempt

In the following we present a model for the spreading phase of the CRv2 worm
which takes place between the 1st and the 19th of each month. This model
is based on the description of the worm behaviour as given in the previous
section.

Let us first build the local model which reflects the spreading behaviour of a
single host. From the description of the worm we conclude that there are three
modes the machine can be in while the worm spreads: Vulnerable, Infected,
and Patched. This results in the finite local state space Sl = {s1, s2, s3} with
|Sl| = K = 3 states. They are labelled as Vulnerable, Infected, and Patched,
as indicated in Figure 5.1. The transition rates are as follows:

• A Vulnerable machine becomes Infected with rate k∗1, which increases if
the number of infected hosts in the environment grows.

• An Infected machine is rebooted and returns back to the Vulnerable state
with constant rate k2.

• A patch might be installed to a Vulnerable or Infected machine, which
happens with rates k∗4 and k∗3, respectively. These rates depend on the
awareness of the worm existence, i.e., as the number of infected machine
grows, the awareness of system administrators increases as well.

64 5.2 CRv2 mean-field model: first attempt

Figure 5.1: The model of the CRv2 propagation for a single server.

• A Patched machine can not be infected and stays in that state for the
remaining time.

Given a network of N nodes (where N is assumed to be large, which is a
reasonable assumption in this context), we can model the overall average be-
haviour of this network under the CRv2 attack through the global mean-
field model (see Section 2.1 for more details). It has the same underlying
structure as the individual model (see Figure 5.1), however, its state space is
So = {m = (m1,m2,m3)}, where m1 is used to denote the fraction of Vul-
nerable machines, and m2 and m3 correspond to the fraction of Infected and
Patched machines, respectively, and the occupancy vector denotes the distri-
bution of machines over the states of the local model. To address the state of
the model at a given time t the occupancy vector is equipped with a notion of
time: m(t) = (m1(t),m2(t),m3(t)).

After defining the global model the transition rates need to be specified.
The rates k∗1, k∗3, k∗4 depend on the number of infected hosts. The infection
rate can be expressed as follows:

k∗1(t) = k1 ·m2(t),

where k1 is the infection rate of a single machine. This representation of
the infection rate is quite accurate, as it takes into account each of the m2

infected computers, that each spread the worm with an identical constant rate

Code-Red worm model and available data 65

k1. This representation is different from the Botnet case-study presented in
Chapter 3, and is commonly used, for example, in epidemiological models. It is
more appropriate for this case-study, since CRv2 targets randomly chosen IP
addresses in contrast to only targeting not infected machines (as in the Botnet
case-study).

The patching rates are difficult to describe as the human factor plays a big
role in this process [64]. We assume here that each infected machine increases
the awareness of the system administrators (more system administrators hear
about CRv2), which leads to a patch application. Given the above description
of the patching rate we first introduce k3 and k4: the rates of patching for
one infected or vulnerable host, respectively. In our model we assume that the
number of patch applications changes with the fraction of infected machines,
similar to the infection rate:

k∗3(t) = k3 ·m2(t), and k∗4(t) = k4 ·m2(t).

Once we have defined the rates, we can apply Theorem 2.2.1 to derive
the system of ODEs that describes the transient behaviour of the mean-field
model,⎧⎨⎩

ṁ1(t) = k2 ·m2(t)− k1 ·m2(t) ·m1(t)− k4 ·m1(t) ·m2(t),
ṁ2(t) = k1 ·m2(t) ·m1(t)− k2 ·m2(t)− k3 ·m2(t) ·m2(t),
ṁ3(t) = k4 ·m1(t) ·m2(t) + k3 ·m2(t) ·m2(t),

(5.1)

with initial conditionsm(0) = {m1(0),m2(0),m3(0)}. The way to assign initial
conditions will be determine in the next chapter.

5.3 Code-Red data sets

The data used in this case-study is the CAIDA Dataset on the Code-Red
Worms - July and August 2001 [96]. This dataset consists of a publicly available
set of files that contain summarized information that does not identify infected
hosts individually.

5.3.1 July 2001

Let us first describe the data sets available for the first outbreak of CRv2 in
July, as in [96]. The dataset includes data from the following three data-sources
(see Figure 5.2):

66 5.3 Code-Red data sets

Figure 5.2: Time intervals where each datasets A (orange), B (green), and C
(blue) are available for the first outbreak of CRv2 on July 19-20, 2001.

A Packet headers collected from a /8 Telescope Network [95] at the Uni-
versity of California, San Diego (UCSD), between midnight and 16:30
UTC on July 19. The UCSD Network Telescope is a globally routed /8
network, where an /8 network is defined by the 8 leftmost bits of the
32-bit IP address, and contains 232−8 = 224 = 16 777 216 addresses.
Because the network telescope includes one out of every 256(28) IPv4
addresses, it receives approximately one out of every 256 probes from
hosts infected with randomly scanning worms. The availability of this
dataset is depicted by the orange rectangle on Figure 5.2.

B Timestamp/IP address pairs for TCP SYN packets (caused by port 80
scanning) received by two /16 networks at Lawrence Berkeley Laboratory
(LBL) [81]. This data consists of probe information collected by Bro [82]
on the LBL networks between 10:00 UTC on July 19, 2001, and 7:00
UTC on July 20, 2001, which is illustrated by the green rectangle on
Figure 5.2.

C Sampled net-flow data from a router upstream of the /8 Telescope Net-
work at UCSD [95], which is collected after 16:30 UTC on July 19. It
was not possible to capture IP packet headers after 16:30 UTC (as in
data-source A), due to a filter, which was put into place upstream of the

Code-Red worm model and available data 67

monitor. This filter was installed on a campus router to reduce conges-
tion caused by the worm, it blocked all external traffic to this network.
However, an UCSD data set consisting of sampled net-flow output from
the filtering router was available at the UCSD site throughout the 24
hour period. The sampled net-flow data can be seen as an approxima-
tion of the individually captured packet headers, as in the data-source
A. This dataset is depicted by the blue rectangle in Figure 5.2.

These three data sources are used to maximize coverage of the expansion of
the worm. Note that the datasets were merged by CAIDA to produce the
anonymized Code-Red July dataset [96], therefore, we can not access them
separately or obtain IP addresses of infected machines.

5.3.2 August 2001

The dataset of the second outbreak of CRv2 (August 2001) includes packet
headers collected from a /8 Telescope Network at UCSD (as in data-source
A). This dataset does not include any external data (as in data-source B)
from outside the Telescope network. However, this dataset is sufficiently large
(see [95]) and can be used for further analysis.

5.3.3 Available data

Both datasets (collected in July and August, respectively) consist of Unix
time stamps (UTC time) and counters (number of hosts). The time stamp
represents the time a new IP address is counted, and the counter keeps track
of all IP addresses registered (see Table 5.1). Thus each line in Table 5.1
corresponds to one newly registered IP address.

There are two traces of data available: (a) start and (b) end times of
hosts performing port 80 TCP SYN scanning (cf. Table 5.1), which can be
interpreted as follows:

(a) Unique newly infected hosts or hosts starting to spread infection.
Hosts were considered to be infected if they sent at least two TCP SYN
packets on port 80 to non-existent hosts on these networks, which helps
to eliminate random source denial-of-service attacks from the Code-Red
data. The term unique here means that the host was added to this dataset
only once, when it first became infected. If the host gets reinfected it
will not be counted a second time.

68 5.4 Code-Red data analysis

Unix timestamps Counter
995500872.242891 1
995500873.623339 2
995500876.419235 3
995500876.964408 4
995500881.546861 5
995500885.53822 6
995500892.317562 7
995500897.297761 8

(a) Unique newly infected hosts

Unix timestamps Counter
995500873.623339 1
995500876.964408 2
995500918.699153 3
995500933.063657 4
995500935.712072 5
995500947.16169 6
995500948.64369 7
995500965.217833 8

(b) Hosts stopped being infected

Table 5.1: First elements of the data set by CAIDA. This data consists of
the UNIX timestamps when the unique IP addresses (a) started spreading the
CRv2, (b) stopped spreading the CRv2; and the counter.

(b) Hosts stopped being infected (inactive). A host, which was pre-
viously infected is considered to be inactive after there was no further
unsolicited traffic observed from it. Note than if the host was disinfected,
and got infected again it will not appear in this dataset, as it starts to
scan again. Only the hosts which remain inactive are collected in this
dataset.

Note that since the data represents only a sample of all probes sent by infected
machines (approximately every 256 probes) it provides a lower bound on the
number of the infected (and inactive) machines at any given time. In the
following we graphically represent the available data for the purpose of further
analysis.

5.4 Code-Red data analysis

To obtained a detailed view on the data we accumulate the data into buckets
of 1 minute, similar to [77], i.e., we calculate the number of infections (disin-
fections) occurring every minute.

Code-Red worm model and available data 69

5.4.1 July 2001

Figure 5.3 depicts the number of newly infected (red) and disinfected (blue)
hosts per minute on July 19-20, 2001. In Figure 5.3a we observe a peak of
activity of 2000 newly infected hosts per minute, which occurred almost at the
same time when the passive monitor data (data-source A) became unavailable,
which makes the duration of this activity unknown. Moreover, the largest peak
of 7000 is registered at around 17:21, however, according to [77] it does not
correspond to the CRv2 hyperactivity, but to a gap in the data collection.
The latter caused the detection of all hosts infected during the gap at the time
when the collection resumed (all infections between 16:51 and 17:21). The
infection slowed down before midnight, when the worm was programmed to
stop the spreading phase. The reason why the rate of infection declines has
been attributed in the literature to various reasons:

• CRv2 caused the network overflow. This explanation is provided in [108],
where the two-factor model for the worm was equipped with the extra
factor in order to address this phenomena. Note that there is no other
evidence available to support this version.

• Many vulnerable hosts were infected or patched. As was mentioned above,
the large amount of hosts were infected, which indeed might make “find-
ing” vulnerable hosts more difficult as suggested by [77].

• The machines in some time zones were switched off. According to [77]
a daily pattern was observed in the infection rate, therefore, many of
the infected machines were actually office desktops, whose users were
not aware that they are running an active web server. Therefore, we
argue that the slow down might be due to the fact that more and more
computers are switched off in each time-zone when the working day ended
and, hence, do not contribute to the propagation of CRv2.

Figure 5.3b depicts the number of inactive computers per minute. The peak
at around 16:30 is caused by the same gap in data collection, as mentioned
above. The activity peak at the end of the day of July 19, 2001, is due to the
switching from the spreading phase to the attack phase.

The cumulative total of the unique infected and inactive hosts is calculated
in order to access the total number of infected and inactive hosts over time.
Figure 5.4 depicts the number of unique newly infected hosts (red solid line)

70 5.4 Code-Red data analysis

00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00
0

1000

2000

3000

4000

5000

6000

7000

00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00

time HUTCL

ho
st
s

(a) Newly infected hosts

00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00
0

2000

4000

6000

8000

10000

00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00

time HUTCL
ho
st
s

(b) Disinfected (inactive) hosts

Figure 5.3: Number of (a) infected and (b) inactive hosts per minute for CRv2
on July 19-20, 2001, as presented in [77].

00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00
0

50000

100000

150000

200000

250000

300000

350000
00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00

time HUTCL

ho
st
s

Inactive
Infected

Figure 5.4: The cumulative total of unique infected (red) and inactive (blue)
hosts on July 19-20, 2001, as presented in [77].

Code-Red worm model and available data 71

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00
0

2000

4000

6000

8000

10000

12000

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00

time HUTCL

ho
st
s

(a) Newly infected hosts

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00
0

2000

4000

6000

8000

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00

time HUTCL
ho
st
s

(b) Desinfected (inactive) hosts

Figure 5.5: Number of (a) infected and (b) inactive hosts per minute for CRv2
on July 31, August 1 and 2, 2001.

and inactive hosts (blue solid line) over time on July 19-20, 2001. As one can
see in Figure 5.4, the growth is smooth until at around 16:30 the dataset is
affected by the gap in the data collection as was described above. The number
of infected (and inactive) hosts is also affected by the data collection problem
and it stops growing at midnight because the worm was programmed to stop
spreading.

5.4.2 August 2001

Figure 5.5 depicts the number of newly infected (red) and disinfected (blue)
hosts per minute on August 1 and 2, 2001. The number of infected hosts
(Figure 5.5a) grows smoothly during the first hours of August 1, 2001. At
approximately 17:30, August 1st, the growth stops and the first big peak ap-
pears, followed by the second peak after approximately 1 hour. There is no
evidence which explains this behaviour, however, it clearly looks like a gap in
the data collection, similar to the one registered by CAIDA in the data from
July. After the gaps the number of infected hosts per minute does not grow,
which, probably, means that the number of vulnerable hosts was very low,
and it took more time to locate such hosts to infect them. In Figure 5.5b we
observe the gaps in the data collection as well. The first peak appears earlier
than in the previous figure, that is between 13:40 and 14:00 on August 1, 2001.

72 5.5 CRv2 mean-field model: reconsideration

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00
0

100000

200000

300000

400000

500000

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00

time HUTCL

ho
st
s

Inactive
Infected

Figure 5.6: The cumulative total of unique infected hosts (red) cf. [77], and
inactive hosts (blue) on July 31 and August 1-2, 2001.

The cumulative total of infected (red solid line) and inactive (blue solid
line) hosts for data between August 1 and 2, 2001, is depicted in Figure 5.6. It
is again visible that this data is affected by, probably, measurement problems,
as discussed above. However, there is no evidence available to provide the
exact reason for this ambiguity.

Given the information above we can now try to find the correspondence
between the state of the mean-field model and the available traces of data.

5.5 CRv2 mean-field model: reconsideration

In Section 5.2 the mean-field model for CRv2 was built based on the worm
description only. The next step is finding the parameters of this model which
provide the best fit to the data. However, an extra-step has to be taken in
order to make sure that the model not only reflects the behaviour of the system
(network under CRv2 attack), but also fits the available data. In case of CRv2,
the model has to be changed to match the available data. In the following we
motivate the changes and build the new model.

Code-Red worm model and available data 73

5.5.1 Rebooting

First of all, the rebooting transition from the infected host back to vulnerable
has to be reconsidered. According to the data description rebooting was not
captured in the dataset. A rebooted host can contribute to the dataset in two
different ways:

• a rebooted host does not get infected again, and is added to the dataset
with inactive hosts,

• a rebooted host gets infected again, however, it will not be counted as
unique infected host for this second infection, so it is not counted.

Since the rebooting transition can not be captured using the available data we
eliminate it from the model. This will, however, influence the fitted parameters
in the following way:

• The propagation speed of CRv2 is found to be very large, therefore,
rebooted hosts were very likely to be reinfected again, which would mean
that the actual number of infections is bigger than the measured data
shows.

• On the other hand, if a host has been rebooted but has not been infected
again, the actual number of disinfections is lower than the one measured
(inactive hosts), since a rebooted host was counted as inactive.

Given the reasoning above, we conclude that if the rebooting transition is
eliminated the infection rate will be under-approximated, while the disinfection
rate will be over-approximated. However, the number of rebooting events is
significantly lower compared to actual infections, therefore, the over/under-
approximation is relatively insignificant.

5.5.2 Patched machines

As was discussed in the previous section the data captures only the inactive
machines (patched after being infected), therefore, the patching transition in
the mean-field model has to be reconsidered. The patched machines have to be
split into two groups: (i) the machines, which became inactive after being in-
fected, and (ii) the machines, which were never infected before getting patched.
This change will not influence the fitted parameters, since each patched host
will be counted once.

74 5.5 CRv2 mean-field model: reconsideration

Figure 5.7: The rethought model of CRv2 propagation

5.5.3 Refined mean-field model

Given the above considerations, a fourth state is added to the model of CRv2.
The states are labelled as Vulnerable, Infected, Inactive, Patched, where the
Inactive state reflects patching after being infected (as present in the dataset);
patching before being infected belongs to the Patched state (see Figure 5.7).
The model then has a finite local state space Sl = {s1, s2, s3, s4} with |Sl| =
K = 4 states, and the transition rates are as follows:

• A vulnerable machine becomes Infected with rate k∗1(t) = k1 · m2(t), as
discussed in Section 5.2.

• Infected machines are patched (and become Inactive) with rate k∗5(t) =
k5 ·m2(t), where k5 is the patching rate of one infected host.

• Vulnerable machines are patched with rate k∗6(t) = k6 ·m2(t), where k6
is the patching rate of one vulnerable host.

Note that, the assumptions for the transition rates are kept the same as in
Section 5.2.

Given a system of N such hosts, the overall mean-field model MO is built
as in Section 5.2. The set of ODEs, describing the transient behaviour of the

Code-Red worm model and available data 75

overall model is as follows:⎧⎪⎪⎨⎪⎪⎩
ṁ1(t) = −k1 ·m2(t) ·m1(t)− k6 ·m1(t) ·m2(t),
ṁ2(t) = k1 ·m2(t) ·m1(t)− k5 ·m2(t) ·m2(t),
ṁ3(t) = k5 ·m2(t) ·m2(t),
ṁ4(t) = k6 ·m1(t) ·m2(t),

(5.2)

with initial conditions m(0) = {m1(0),m2(0),m3(0),m4(0)}. The initial con-
ditions are not available at the moment, we provide a way to obtain them in
the next chapter.

Note that there is a couple of other possible changes which might be con-
sidered after studying the dataset, for example:

• Daily patterns of the infected machines. This factor is not included due to
the nature of the available data. Since the data was anonimized there is
no information available about location (time-zone) of the host, therefore,
the adjustments can not be made. Moreover, by considering this factor
we would add more unknown parameters in the model, while only two
data traces are available for fitting. This might have a negative impact
on the results (see chapter Chapter 6).

• Network overload. We do not include this into the case-study due to the
fact that this will over-complicate the model. Moreover, there is no proof
that network overload influenced the spread of CRv2. Finally, due to the
gaps in the data collection we will only use part of the data, where the
network overload could not play a big role.

5.5.4 Adapted view on the data

The available measurement data (as shown in Figures 5.4 and 5.6) shows the
total number of infected and patched hosts, neither of which corresponds dir-
ectly to state s2 of the model. To obtain data corresponding to s2 of the overall
model, i.e., the number of hosts still infected at a given time, the number of
inactive hosts has to be subtracted from the number of infected hosts. This
results in Figures 5.8 and 5.9, which depict this modified view on the data,
for July and August 2001, respectively. This data corresponds directly to the
states of the extended model: (i) the number of still infected hosts (orange
solid line) is reflected by m2(t) (and state s2), (ii) the number of inactive hosts
(blue solid line) corresponds to m3(t) (and state s3), and this data will be used
for the fitting procedure in the next chapter.

76 5.5 CRv2 mean-field model: reconsideration

00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00
0

50000

100000

150000

200000

250000

300000

350000
00:00 4:00 8:00 12:00 16:00 20:00 00:00 4:00

time HUTCL

ho
st
s

Inactive
Infected

Figure 5.8: The number of hosts, still infected at time t (orange); and inactive
hosts (blue) on 19th and 20th of July 2001

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00
0

50000

100000

150000

200000

250000

300000

16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00

time HUTCL

ho
st
s

Inactive
Infected

Figure 5.9: The number of hosts, still infected at time t (orange); and inactive
hosts (blue) on July 31 and August 1-2, 2001

Code-Red worm model and available data 77

5.6 Summary

In this chapter we have described the behaviour of the Code-Red worm and
built the mean-field model of the spreading phase of the worm behaviour.
Moreover, the available data has been discussed, which led to the adaptation
of the obtained model. We discussed the relation between the original and the
adapted model in more details in Section 6.6, however, it is important to note
that the fitting could not be done without adapting the model.

6

Code-Red case study.
Results

In this chapter we discuss the fitting procedure, and present best fitting para-
meters of the mean-field model, we analyse both the first and the second out-
breaks of the CRv2, and show that the mean-field model is able to capture the
real-life worm behaviour. Moreover, we discuss the possible issues, which can
appear during the fitting process.

6.1 Parameter-fitting applied to CRv2

In Section 4.2 two methods for parameter estimation were presented, namely,
minimization of the relative squared error and the negative log-likelihood. In
the following we apply these methods to the CRv2 dataset with two traces,
denoted as O(tr) = {O2(tr),O3(tr)}. In the following we match these traces
to the corresponding states of the mean-field model m(t), using the mapping
as in (4.1):

• O2(tr) denotes the number of infected hosts over time, which corresponds
to M2(tr),

• O3(tr) represents the number of inactive hosts, which corresponds to
M3(tr),

• tr is an observational points in time, where tr− tr−1 = 1 minute, because
the data was collected in one minute buckets (see Section 5.4).

• 0 ≤ r ≤ R, where R is the number of available data observations (the
size of the dataset). The size of the dataset is different for the first and
the second outbreak of CRv2.

80 6.2 Setting initial conditions

Data corresponding to M1(t) and M4(t) is not available, so these can not be
included into the fitting procedure. Note that the partial availability of the
data may lead to unsuccessful parameter estimation.

The relative squared error and the negative log-likelihood are calculated
according to Formulas (4.3) and (4.8) as follows:

Erel =

∑r=R
r=1 (O2(tr)−M2(tr))

2 + (O3(tr)−M3(tr))
2∑r=R

r=1 (O2(tr)− Ô2)2 + (O3(tr)− Ô3)2
, (6.1)

where Ô2 and Ô3 are averages of the data traces O2 and O3 respectively.

L∗ =
1

R

R∑
r=1

log 2πσ2 +
(O2(tr)−M2(tr))

2 + (O3(tr)−M3(tr))
2

2σ2
. (6.2)

As one can see, in both estimators the Euclidean Distance is being minimized,
which means that both relative squared error and negative log-likelihood in
this case-study yield the same results. Therefore, exploiting variance as an
extra parameter will not lead to a better result for our model. In the following
we will use both to check whether these estimators predict the same parameter
values.

6.2 Setting initial conditions

The initial conditions for the mean-field model need to be set, as these are
critical in order to define the model. There exist a couple of possible ways to
determine the initial conditions:

1. The exact information about the initial system state is obtained by meas-
urements or the a-priory known set-up of the experiment.

2. There is circumstantial evidence about the initial system state obtained
from the system description or any other additional resources. In this
case justifiable assumptions have to be made.

3. Adding the initial conditions as an extra parameters to be estimated.

Knowing the exact initial setting is always beneficial, since inaccurate assump-
tions can lead to an incorrect fit. However, in most of the cases this information
is not available. In what follows, we will make use of each of the above three
approaches, thus also showing their advantages and disadvantages.

Code-Red case study. Results 81

6.3 CRv2 outbreak in July 2001

We first estimate parameters for the data of July 19th 2001. In order to make
sure that we only use the data which can be captured by the proposed model
we have to omit the slowing down phase, which starts when the desktops in
the eastern time zones start to switch off, and/or the network is overloaded
by the large number of probes infected hosts are performing. Note that in
general these factors can be included in the mean-field model, however, the
data, which was made publicly available by CAIDA is not sufficient enough
to do so. However, when more data is available it is possible to extend the
mean-field model of the spreading phase and necessary.

As was mentioned in Section 5.4 the slowing down can clearly be seen after
16:20 (see Figure 5.8), and at around this time the gap in the data collection
occurred and the dataset A become unavailable. Therefore, we use the data
collected before 16:20 UTC on July 19th, to avoid (i) the strong effect of the
hosts switching off and, (ii) usage of data which was collected in two different
ways; and (iii) the gap in the data collection (see Figure 5.3).

6.3.1 Setting the initial conditions for the July outbreak

We need to set the initial conditions for the model. In [19] it was mentioned
that CRv2 infected between 1 and 2 million out of a potential number of 6
million hosts. Therefore, to start with, we set the initial number of vulnerable
hosts M1(0) equal to 6 million, minus the number of nodes initially infected,
patched or inactive. We set the initial number of patched nodes to M4(0) = 0,
whereas for the initial number of infected and patched nodes we take the
corresponding number from the trace at 10:00 o’clock (the generally assumed
starting time of the outbreak of CRv2). That is, we set M2(0) = 4181 and
M3(0) = 2528. Note that these could be ”left-overs” from the CRv1 outbreak,
hence, we cannot be sure whether this is a good choice.

Figure 6.1 depicts the (fitted) model prediction of the number of infected
(orange solid line) and inactive (blue solid line) hosts, and the measured num-
ber of infected (orange dashed line) and inactive (blue dashed line) hosts. The
model parameters are obtained by minimising the relative squared error and
the negative log-likelihood. As one can see, the fitted model (solid lines) does
not fit the measurement data (dashed lines) very well. It overestimates the
number of infected hosts in the beginning by 10 to 20 thousand hosts, and un-
derestimates it after 15:30 UTC. This is also reflected in the relative squared

82 6.3 CRv2 outbreak in July 2001

10:00 12:00 14:00 16:0011:00 13:00 15:00
0

50000

100000

150000

10:00 12:00 14:00 16:0011:00 13:00 15:00

time HUTCL

ho
st
s

Inactive hosts. Model
Infected hosts. Model
Inactive hosts. Data
Infected hosts. Data

Figure 6.1: Fitting results for the number of infected hosts at time t (orange
solid lines), and inactive hosts at time t (blue solid lines) for the dataset (dashed
lines) of July 19, 2001; initial condition M(0) = (6 ·106−6709, 4181, 2528, 0) =
(5 993 291, 4181, 2528, 0).

error of the fitting procedure, which is approximately 9.9%, and negative log-
likelihood, which equals 265 308.

Apparently, there is a factor we did not take in account well enough. Most
probably, the parameter k1 (the speed of the virus propagation) is underes-
timated (see results after 15:30), whereas the initial overestimation might be
due to the incorrect initial settings (the number of the initially infected hosts
is too big).

6.3.2 Reconsidering initial conditions

The reason for the bad fit might lie in the fact that the activity of CRv1 and
other unsolicited SYN probes were already registered before CRv2 started to
spread (see [77]). Because of this, all infections that took place before 10:00
UTC have to be subtracted; which leaves only 3 infected hosts at 10:00 UTC. In

Code-Red case study. Results 83

10:00 12:00 14:00 16:0011:00 13:00 15:00
0

50000

100000

150000

10:00 12:00 14:00 16:0011:00 13:00 15:00

time HUTCL

ho
st
s

Inactive hosts. Model
Infected hosts. Model
Inactive hosts. Data
Infected hosts. Data

Figure 6.2: Fitting results for the number of infected hosts at time t (orange
solid lines), and inactive hosts at time t (blue solid lines) for the dataset (dashed
lines) of July 19, 2001; initial condition M(0) = (6 · 106 − 3, 3, 0, 0).

this context, note that the initial number of hosts infected with CRv1 is known
to be 3 [77]; it appears consistent that CRv2, as direct “improvement” of CRv1
starts from the same number of initially compromised hosts. Similarly, all the
hosts which were registered as inactive at 10:00 UTC have to be eliminated
since they were not counted due to the CRv2 activity and are not captured
by the model. Hence, we refit the model, but now with the data, which was
corrected accordingly, namely, O1(tr) = O1(tr)− 4181 + 3; O2(tr) = O1(tr)−
2528, and initial conditions M(0) = (6 · 106 − 3; 3; 0; 0).

The results of the new parameter fitting are shown are Figure 6.2. The
fit for the number of infected hosts is quite good: the observed data (or-
ange dashed line) is almost indistinguishable from the number predicted by
the model (solid orange line). Also the relative squared error of the fitting
procedure has reduced to 1.6%. Minimizing the negative log-likelihood yields
the same result, and L∗ = 5114.22, while in the previous experiment it was
265 308. The negative likelihood still looks large, however, compared to the

84 6.3 CRv2 outbreak in July 2001

10:00 12:00 14:00 16:0011:00 13:00 15:00
0

50000

100000

150000

10:00 12:00 14:00 16:0011:00 13:00 15:00

time HUTCL

ho
st
s

Inactive hosts. Model
Infected hosts. Model
Inactive hosts. Data
Infected hosts. Data

Figure 6.3: Fitting results for the total number of infected hosts (orange
solid line), inactive hosts (blue solid line) and the corresponding observed
data points (dashed lines, same colour), for July 19, 2001. Initial condition
M(0) = (2 · 106 − 3, 3, 0, 0).

total size of the population and the number of infections it is relatively small.
To a large extent, the remaining uncertainty is due to the estimation of the

number of inactive hosts. This can be explained by the fact that the inactive
hosts are difficult to model because it involves modelling human behaviour:
as explained in Section 5.2 we have assumed for simplicity that the rate of
patching hosts is linearly proportional to the number of infected hosts.

6.3.3 Double-checking assumptions

We now go further into the choice of the initial conditions, in particular, the
number of initially vulnerable hosts (M1(0) in our model). We performed 60
fitting experiments, where we took M1(0) = I − M2(0), with I ∈ {5 · 105; 6 ·
105; . . . ; 6.4 · 106}, M2(0) = 3 and M3(0) = M4(0) = 0. We then find that
when the number of initially vulnerable hosts is taken in the range from 5 ·105

Code-Red case study. Results 85

10:00 12:00 14:00 16:0011:00 13:00 15:00

10

100

1000

104

105
10:00 12:00 14:00 16:0011:00 13:00 15:00

time

ho
st
s

Infected hosts. Model
Infected hosts. Data

Figure 6.4: Fitting results for the total number of infected hosts (red solid line)
and the corresponding observed data points (dotted orange line), for July 19,
2001. Initial condition M(0) = (2 · 106 − 3, 3, 0, 0).

to 2 ·106, the relative error is smallest, and does almost not change (with value
close to 0.2%). In case the initial number of vulnerable hosts is larger than
2 million, the relative error increases. Hence, without relying on any textual
source, the (purely numerical) optimal choice for the initial number of hosts
lies in the smaller range (and is smaller than the 6 million assumed previously).

Figure 6.3 presents the fitting results for initial conditionsM(0) = (2·106−
3; 3; 0; 0). As one can see, the model prediction is hardly distinguishable from
the measured data, however, the quality of the fit during the early hours of
the spread (between 10:00 and 13:00 UTC) is difficult to judge. To be able to
evaluate the quality of the fit during the whole time interval Figure 6.4 depicts
the number of infected hosts as predicted by the fitted model and measured
by CAIDA in logarithmic scale. When the number of infected hosts is small,
we observe the “big” difference between the model prediction and the observed
data. Recall that in the data we use the activity of CRv1 and random port
80 probes can be measured together with the CRv2 activity. Even though we

86 6.3 CRv2 outbreak in July 2001

10:00 12:00 14:00
0

500000

1.0μ 106

1.5μ 106

2.0μ 106
10:00 12:00 14:00

time HUTCL

ho
st
s

Patched hosts. Model
Vulnerablehosts. Model
Inactive hosts. Model
Infected hosts. Model
Inactive hosts. Data
Infected hosts. Data

Figure 6.5: Fitting results for the total number of infected hosts (orange solid
line), inactive hosts (blue solid line) and the corresponding observed data
points (dashed lines, same colour; almost completely overlapping with the
solid lines), as well as the vulnerable hosts (green line) and the patched hosts
(purple line), all for July 19, 2001. Initial condition M(0) = (2 ·106−3, 3, 0, 0)

subtracted the unrelated probes which happen before 10:00 UTC, CRv1 has
been active during whole day of July 19th. Therefore, the underestimation
seen in Figure 6.4 during the first hours of the CRv2 spread might be due to
the fact that these unrelated activities are still “visible” and have an impact
on the data. However, this impact is limited (due to the static seed of CRv1),
and once the number of host infected by CRv2 exceeds by far the unrelated
activity, the fit becomes excellent. Note, moreover, that the underestimation
does no exceed 100 hosts, therefore, it does not have a significant impact on the
estimators (relative squared error and negative log-likelihood), hence a good
fit can still be obtained.

Finally, Figure 6.5 depicts the fitted model behaviour for all four states
including the two states for which no data was available. The number of
patched hosts is estimated to be quite high, and the number of vulnerable

Code-Red case study. Results 87

hosts is getting smaller, which explains the slowing down of the infection.
Earlier in this section we discussed that (1) the fitting procedure for CRv2

is done on partially available data, and (2) we made assumptions about the
number of vulnerable hosts in the population. Both these factors influence the
obtained result as follows:

(1) As the number of vulnerable and patched hosts are not available the fit-
ting procedure is free to choose these numbers for minimizing the squared
error. If there is more data available, the fitting procedure would prob-
ably yield a different parameter set, however, given the available inform-
ation the obtained fit is the best possible.

(2) As we discussed above, the correct choice of the initial conditions might
influence the results. We performed the experiments in order to find out
what would be the best initial conditions for the given case-study (see
Figure 6.3). Moreover, we checked how these changes would influence
the obtained parameters. The infection rate k1 remains constant in all
60 experiments, while the patching rate k6 increases when the population
grows, which leads to a large number of patched hosts.

6.4 CRv2 outbreak in August 2001

The parameter fitting for the measurements from August 1, 2001 will be ad-
dressed in this section. As before, also for the August dataset the initial
conditions are unknown. It seems reasonable to assume that the number of
vulnerable hosts did not change dramatically after the first outbreak of CRv2;
only a limited number of hosts was patched during the attacking phase of
CRv2, as also suggested in [77]. We therefore set M1(0) = 1.5 · 106. It is
again difficult to find good values for the initial number of infected machines
and inactive machines, due to the fact that all the activity of CRv2 before
00:00 UTC has to be taken into account, and, in addition, all the nodes being
affected by background activity have to be eliminated.

In this section we illustrate the third way (cf. Section 6.2) of dealing with
unknown initial conditions, that is, we add them as an extra parameters to
the fitting procedure. Notice that although this way seems to be the most
straightforward, adding extra degrees of freedom to the fitting procedure can
lead to a worse result. Therefore, using this method while having limited data

88 6.4 CRv2 outbreak in August 2001

07:00 10:00 13:00 16:00
0

20000

40000

60000

80000

100000

120000

140000

07:00 10:00 13:00 16:00

time HUTCL

ho
st
s Inactivehosts. Model

Infectedhosts. Model
Inactivehosts. Data
Infectedhosts. Data

Figure 6.6: he observed data points and fitting results (dashed lines) for the
number of infected hosts at time t (orange); and inactivated hosts (blue) on
August 1, with initial conditions M(0) ≈ (1 498 669, 1331, 0, 0) (rounded val-
ues).

traces (as in CRv2 case) is a “last resort” rather than an obvious solution. Here
we take the initial numbers of infected nodes (M2(0)) as extra parameters to
the parameter fitting procedure; the number of inactive (M3(0)) and patched
hosts (M4(0)) can again be set to zero, as the patching before midnight was not
due to the activity of CRv2 for this outbreak. Given the above assumptions, we
need to find the parameters k1,k5, k6, and initial conditionM2(0) that minimise
the relative squared error between the model prediction and the data.

Figure 6.6 depicts the result of the model fitting procedure for the initial
conditions M(0) ≈ (1 498 669; 1 331; 0; 0). These initial conditions allow us
to gain the best fit with a squared error of approximately 0.7%. Note that
the number of initially infected hosts is actually not an integer number (but
1 331.16) due to the fact that the mean-field model is a model that addresses
fractions of objects, but not every object is modelled independently. As one
can see, the fitted model reflects the number of infected hosts during the second

Code-Red case study. Results 89

outbreak of CRv2 quite well, despite a still unresolved problem with the data
collection around 13:00 UTC.

6.5 Summary

In this chapter the parameter estimation procedure was illustrated. We were
able to obtain parameters which ensure the relative squared error of 0.2% and
0.7% between the model prediction and the real data of July and August,
respectively. Moreover, a number of possible issues which can emerge when
working with real data were addressed, namely:

• how to obtain accurate initial conditions (three possible ways);

• how to make sure that only the data which corresponds to the modelled
activity is used;

• how to double-check the influence of the assumptions made before the
fitting procedure is started.

The following section concludes the case study providing final remarks and
directions.

6.6 Concluding remarks

This case-study provides a full account of the fitting process required to obtain
a fully parameterised model of virus spread. We base our model and fitting
procedure on publicly known insight in the operation of CRv2, and on publicly
available data sets. This part foremost shows the challenges encountered when
trying to parameterise a simple model of a large-scale distributed system based
on publicly available data sets.

Starting from the characterisation of the system itself, i.e., CRv2, we pro-
posed an initial model describing the state of each host in the network, and
subsequently discussed why the unavailability of certain measurement data
leads to a slightly adapted model. We also presented why the measurement
data has to be handled very carefully, e.g., due to the fact that certain meas-
urement intervals are missing or incomplete, e.g., due to sampling or gaps in
the data collection. Furthermore, the available data only reflects part of the
system under study, that is, the data does not provide information on the

90 6.6 Concluding remarks

number of rebooted and patched hosts nor on the total number of vulnerable
hosts. For these reasons, the fitting procedure has been a very tedious process,
which cannot be easily automated, and from which no final “once-and-for-all
recipe” can be given.

The model with the fitted parameter reflects closely the behaviour of the
modelled system, which gives the possibility of gaining better understanding
of this phenomena, for example, using model-based evaluation techniques (see
next part). Note that the original mean-field model differs from the recon-
sidered model, therefore, some properties of the original model can not be
assessed. This is a draw-back of the partially available data. For example,
any properties related to rebooting of the infected host are out of the scope of
the final model. However, the fitted model reflects most of the properties of
the original model, and without the proposed changes the model could not be
parametrized, and, hence, studied.

Despite these facts, we have shown that it is possible to find a model
and a set of parameters that closely captures the first part of the virus spread-
ing. Whether these are the “ultimate correct parameters” cannot be concluded,
simply because we are missing ground truth for statements like that. The mod-
els we fitted allowed us to obtain parameters which ensure a relative squared
error of 0.2% and 0.7% between the model prediction and the measurement,
for the July and August outbreaks, respectively.

Code-Red case study. Results 91

Part III

Model-Checking

Recently, many systems that consist of a large number of interacting ob-
jects have been analysed using the mean-field method, which allows a quick
and accurate analysis of such systems, while avoiding the state-space explosion
problem. So far, the mean-field method has mostly been used for performance
evaluation. In this part, we discuss model-checking mean-field models. We
define and motivate two logics, called MF-CSL and MFL, for describing prop-
erties of systems composed of many identical interacting objects. We discuss
the differences in the expressiveness of these two logics and possible combina-
tion of them.

This part is organized as follows. Chapter 7 provides motivation, related
work and describes a running example, used through the part. In Chapter 8
the logic MF-CSL is introduced together with the model-checking algorithms
and examples, illustrating checking an MF-CSL property of a computer virus
model. The logic MFL is described in Chapter 9; we present syntax and
semantics of MFL, model-checking algorithms, and discuss the satisfaction set
development. Chapter 10 provides a comparison of the two logics and discusses
the combination of MFL and MF-CSL. Concluding remarks are presented in
Section 10.3.

7

Model-checking mean-field
models

With this chapter we provide an introduction to the model-checking of mean-
field models. We motivate the performed study in Section 7.1. An overview of
the related work is presented in Section 7.2. The running example used in this
part of the thesis is introduced in Section 7.3.

7.1 Motivation

In the previous chapters we showed how a mean-field model can be built and
how the model parameters can be obtained. Thus far, the mean-field method
was mostly used for performance evaluation of systems using measures like
transient and stationary behaviour, maximum (minimum) or mean values,
however, also more involved measures are of interest. Therefore, developing
methods for efficient and automated model-checking of such non-trivial prop-
erties is essential and not trivial.

One challenge lies in the fact that the model has two layers, therefore it
is essential to be able to formulate properties on both levels. Another chal-
lenge is that the local model is a time-inhomogeneous Markov chain (ICTMC),
therefore the results of the model-checking procedure depend on time. Finally,
the state-space of the global mean-field model is infinitely large, hence, finding
the satisfaction set is difficult.

In this part of the thesis we introduce two logics, namely, Mean Field
Continuous Stochastic Logic (MF-CSL), andMean-Field Logic (MFL) together
with full model-checking algorithms. The reason for introducing two logics
lies in the different types of properties that can be expressed and checked
using one or the other. The logic MF-CSL expresses properties of a random

98 7.2 Related work

node in a system (including timed properties) and then lifts these up to the
overall system level using new expectation operators. In contrast, the logic
MFL expresses properties of the overall system directly; it does not take into
account the behaviour of the individual objects. We compare the logic MF-
CSL with the logic MFL, and motivate the existence of both. The possible
combination of both logics is also discussed and illustrated by an example.

7.2 Related work

Model-checking means checking whether a system state satisfies certain prop-
erties. It was initially introduced for finite deterministic models, for the val-
idation of computer and communication systems, and later extended towards
stochastic models and models with continuous time. Checking models of large
systems is made difficult by the state-space explosion problem. Hence, model-
checking mean-field models is considered a valuable continuation. For an over-
view we refer to [58].

Before the first steps towards model-checking mean-field models were taken,
more general problems of (i) HML (Hennessy-Milner logic) and (ii) LTL (Linear
Temporal logic) model-checking of ICTMCs were addressed in [62] and [27].
First an approximate algorithm for verifying stochastic variant of HML on
piecewise constant ICTMCs was developed. Then the basis for the LTL model-
checking of ICTMCs was provided. Even though the local mean-field model
is an ICTMC these algorithms will not be used in this thesis, since different
types of properties, namely CSL properties, are checked on the local level of
MF-CSL.

The first work on model-checking mean-field models has been presented
in [18, 66]. In [18] first steps towards approximate model-checking of bounded
CSL properties of an individual object (or group of objects) in a large pop-
ulation model are presented. The Fast Simulation Theorem [30] is used for
the characterisation of the behaviour of a single object via the average sys-
tem behaviour, as defined by the mean-field approximation. The proposed
method is called fluid model-checking, it has been supplemented with next and
steady-state operators in [19].

In contrast to fluid model checking, [66] focuses on the properties of the
overall population and proposes the logic MF-CSL (as in Chapter 8). MF-CSL
formulas consist of two layers, namely, the local CSL formula, which describes
the property of the individual object, and a global expectation formula de-

Model-checking mean-field models 99

scribing the fraction of objects, satisfying the local formula. The algorithm for
checking the until operator on the local level is based on the algorithm presen-
ted in [18]. An extra-layer on top of local CSL properties allows describing
global properties of the whole system. We discuss this logic in more detail
later in this part.

Another two-layer logic is introduced in [21]. The time-bounded local prop-
erties are described using 1-clock Deterministic Timed Automata. Then, a
global probability operator is introduced on top of that for estimating the
probability that a certain fraction of local objects satisfies the local property,
instead of the fractions of objects satisfying a certain property as in [66] and
Chapter 8.

A different approach for model-checking mean-field models has been pro-
posed in [70]. The authors focus on the properties of an individual object,
which is modelled as a discrete-time model in contrast to previously mentioned
works. The, so called, on-the-fly model-checking approach examines only those
states that are required for checking a given property, instead of constructing
the whole state-space before starting the actual model-checking procedure.

Another way of looking at a mean-field model is by considering the be-
haviour of the whole system without addressing its local behaviour. Having
in mind the representation of the global behaviour as real-valued signal, one
can use Signal Temporal Logic (STL)-like properties [74], as will be discussed
further in Chapter 9 of this thesis. Moreover, a great effort has recently been
made in enhancing temporal properties with a real value, which is addressed
as quantitative semantics or robustness degree [34, 35, 39, 86]. These methods
can be successfully applied to mean-field models, as well. The robustness of
stochastic systems (including mean-field or fluid models) has been discussed
in [9]. In addition, the design problem has been addressed, where the paramet-
ers of the model can be optimized in order to maximize robustness. Several
tools are available, which allow calculating the robustness degree [2, 24, 32].

7.3 Running example

Let us introduce a running example now, which will be used to illustrate the
expressivity of the two logics and the corresponding model-checking algorithms.

Example 7.3.1. We address a model of virus spread in a system of interacting
computers (see Figure 7.1). We divide the whole system into three groups (e.g.,

100 7.3 Running example

different departments or geographical locations). We name these groups X, Y,
and Z. Each group has a fixed number of nodes (computers) NX , NY and NZ ,
respectively, where N = NX +NY +NZ . Communication between the groups is
possible, but less probable than within a group. The system we model has three
different locations and two different types of hardware (or software), where for
each type the same computer virus would behave differently, i.e., computers in
group X differ from the computers in groups Y and Z. The model of computer
behaviour has to take into account the possibility of being (i) in each of the three
groups, and (ii) being in each of the states of infection. Let us now consider
the spread of the infection.

States represent the modes of an individual computer, which can be not-
infected, infected and active or infected and inactive in all three groups; in
addition, in group X a computer has to first stay in the initially connected state
before the virus is fully embedded in the computer system and the computer
is infected. An active infected computer spreads the virus, while an inactive
computer does not.

Given this system description, the state-space of the local model has to be
extended to incorporate the possibility of being in each of the three groups. This
results in the finite local state-space

Sl = {sX,1, sX,2, sX,3, sX,4, sY,1, sY,2, sY,3, sZ,1, sZ,2, sZ,3},

with |Sl| = K = 10 states. They are labelled as infectedX , not infectedX ,
initial connectionX , activeX and inactiveX , etc., as indicated in Figure 7.1.

The transition rates for computers in the first group are as follows: the in-
fection rate k∗X,1 is the rate to become initially connected; after that a computer
has to first try to pass the initial connected state with rate kX,3 or return to
the not infected state with rate kX,2. The recovery rate for an inactive infected
computer is kX,5, the recovery rate for an active infected computer is kX,7, the
rate with which computers become active is kX,4 and they return to the inactive
state with rate kX,6. Rates kX,2, kX,3, kX,4, kX,5, kX,6 and kX,7 are specified by
the individual computer and the properties of the computer virus and do not
depend on the overall system state. The infection rate k∗X,1 does depend on the
rate of attack kX,1, the fraction of computers that is infected and active and,
possibly, the fraction of not-infected computers. The dependence on the overall
system state is intended to reflect real-world scenarios and might be different
for different situations.

Model-checking mean-field models 101

F
ig
ur
e
7.
1:

T
he

m
od
el
de
sc
ri
bi
ng

co
m
pu
te
r
vi
ru
s
sp
re
ad

in
th
re
e
gr
ou
ps

of
co
m
pu
te
rs
.

102 7.3 Running example

Given a system of N computers, we can model the average behaviour of the
whole system through the global mean-field model, which has the same underly-
ing structure as the individual model (see Figure 7.1), however, with state-space

So = {mX,1,mX,2,mX,3,mX,4,mY,1,mY,2,mY,3,mZ,1,mZ,2,mZ,3},
where mX,1 denotes the fraction of not-infected computers in group X, mX,2

represents the fraction of computers in the initially connected state, and mX,3

and mX,4 denote the fraction of active and inactive infected computers in group
X, etc.

The infection rate can then be seen as the number of attacks performed by
all active infected computers in group X, which is uniformly distributed over
all not-infected computes in a chosen group, that is,

kX,1 · mX,4(t)

mX,1(t)
.

Note that we assume here that computer viruses are “smart enough” to only
attack computers which are not yet infected, see [99], [65]. As was discussed
above, the computers from the different groups might interact with a certain
probability. In the context of our virus spread model, this interaction plays a
role when infected computers from groups Y and Z might contact not infected
computers in group X and vice versa. In this example model we describe a virus
which chooses one of the groups of computers with probability pX,X , pX,Y , pX,Z

(for an infected computer from group X). The complete infection rates are
composed by multiplying the above rates for one group with the probability of
choosing a given group and accumulating all possible interactions between the
three groups. Given the reasoning above, the infection rate in group X is

k∗X,1 = pX,X · kX,1 · mX,4(t)

mX,1(t)
+ pY,X · kY,1 · mY,3(t)

mX,1(t)
+ pZ,X · kZ,1 · mZ,3(t)

mX,1(t)
.

The infection rates of groups Y and Z are constructed in a similar way:

k∗Y,1 = pY,Y · kY,1 · mY,3(t)
mY,1(t)

+ pX,Y · kX,1 · mX,4(t)
mY,1(t)

+ pZ,Y · kZ,1 · mZ,3(t)
mY,1(t)

,

k∗Z,1 = pZ,Z · kZ,1 · mZ,3(t)
mZ,1(t)

+ pX,Z · kX,1 · mX,4(t)
mZ,1(t)

+ pY,Z · kY,1 · mY,3(t)
mZ,1(t)

.

Theorem 2.2.1 is used to derive the following system of ODEs, that describes
the mean-field model:

Model-checking mean-field models 103

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṁX,1(t) = −pX,X · kX,1 ·mX,4(t)− pY,X · kY,1 ·mY,3(t)−
− pZ,X · kZ,1 ·mZ,3(t)+
+ kX,2 ·mX,2(t) + kX,5 ·mX,3(t) + kX,7 ·mX,4,

ṁX,2(t) = pX,X · kX,1 ·mX,4(t) + pY,X · kY,1 ·mY,3(t)+
+ pZ,X · kZ,1 ·mZ,3(t)+
+ (kX,2 + kX,3) ·mX,2(t),

ṁX,3(t) = kX,3 ·mX,2(t)− (kX,4 + kX,5) ·mX,3(t),
ṁX,4(t) = kX,4 ·mx,3 − (kX,6 + kX,7) ·mX,4,
ṁY,1(t) = −pY,Y · kY,1 ·mY,3(t)−

− pX,Y · kX,1 ·mX,4(t)−
− pZ,Y · kZ,1 ·mZ,3(t)+
+ kY,2 ·mY,2(t) + kY,5 ·mY,3(t),

ṁY,2(t) = pY,Y · kY,1 ·mY,3(t) + pX,Y · kX,1 ·mX,4(t)+
+ pZ,Y · kZ,1 ·mZ,3(t)+
+ kY,4 ·mY,3(t)− (kY,2 + kY,3) ·mY,2(t),

ṁY,3(t) = kY,3 ·mY,2(t)− (kY,4 + kY,5) ·mY,3(t),
ṁZ,1(t) = −pZ,Z · kZ,1 ·mZ,3(t)− pX,Z · kX,1 ·mX,4(t)−

− pY,Z · kY,1 ·mY,3(t)+
+ kZ,2 ·mZ,2(t) + kZ,5 ·mZ,3(t),

ṁZ,2(t) = pZ,Z · kZ,1 ·mZ,3(t)+
+ pX,Z · kX,1 ·mX,4(t) + pY,Z · kY,1 ·mY,3(t)+
+ kZ,4 ·mZ,3(t)− (kZ,2 + kZ,3) ·mZ,2(t),

ṁZ,3(t) = kZ,3 ·mZ,2(t)− (kZ,4 + kZ,5) ·mZ,3(t),

(7.1)

Let us define the parameters of the mean-field model as follows:

pX,X = 0.93, pY,Y = 0.94, pZ,Z = 0.97,
pX,Y = 0.05, pY,X = 0.05, pZ,X = 0.02,
pX,Z = 0.02 pY,Z = 0.01, pZ,Y = 0.01,
kX,1 = 0.2, kY,1 = 0.9, kZ,1 = 0.25,
kX,2 = 0.01, kY,2 = 0.005, kZ,2 = 0.001,
kX,3 = 0.2, kY,3 = 0.01, kZ,3 = 0.001,
kX,4 = 0.0001, kY,4 = 0.1, kZ,4 = 0.05,
kX,5 = 0.0001, kY,5 = 0.06. kZ,5 = 0.001.
kX,6 = 0.005,
kX,7 = 0.005.

104 7.3 Running example

5 10 15 20
time

0.05

0.10

0.15

0.20

0.25

Group X

5 10 15 20
time

0.05

0.10

0.15

0.20

0.25

0.30
Group Y

5 10 15 20
time

0.05

0.10

0.15

0.20

0.25
Group Z

Figure 7.2: Distribution of the computers over the states of the model for each
group. Red, blue, green and orange lines show the fraction of not infected,
initially infected, infected inactive and infected active computers respectively.

Model-checking mean-field models 105

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

Figure 7.3: The total distribution of the computers over the states of the model
for all three groups. Red, blue, green and orange lines show the fraction of
not infected, initially infected, infected inactive and infected active computers
respectively.

To illustrate the behaviour of the modelled system the ODEs (7.1) can be
solved numerically, given the following initial conditions:

m(0) =
1

3
({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}).

The distribution of objects over three groups in this example is even, where
N1 = N2 = N3 = N

3 . Figure 7.2 shows the distribution of the objects between
the states of the model over time. We obtained these results using Wolfram
Mathematica [103]. As one can see, for the given parameters the virus manages
to spread over the population.

In groups X and Y virus spreads comparably fast, despite the fact that the
rate of infection kX,1 in group X is 4.5 times lower than kY,1 in group Y . This
is due to the high removal rates for active infected computers in group X, and
the fact that infected machines stay in active state less often.

In group Z the spreading is much slower due to the relatively low infection
rate kZ,1 and due to the fact that many computers were already infected, when

106 7.3 Running example

we started to evaluate the system in group Z. Moreover, the communication
between groups X and Y is more probable, therefore, group Z is more “isolated”,
and infection spreads (almost) only within this group.

To evaluate the behaviour of the whole system the total fraction of not infec-
ted, infected and inactive, infected and active, and initially infected computers
in all three groups was obtained by simply summing up the respective fractions
from the overall model state. As one can see on Figure 7.3, around 70% of the
whole population was infected after twenty time units, which confirms the fast
infection spread patterns within all three groups.

The fraction of the initially infected computers is relatively low since these
machines are only found in one group. The fraction of the active infected com-
puters tends to stay low as the viruses are programmed to be as less detectable
as possible, which is confirmed by both Figures 7.2 and 7.3.

©

8

Mean-Field Continuous
Stochastic Logic

In this chapter we propose a new logic for expressing properties of mean-field
models. Before introducing a new logic one has to formally describe the types
of questions of interest. Since a mean-field model is used to reason about the
fractions of objects in a given state one can express the expected fractions of
object, which satisfy a given local property. Given that type of specification,
a two-layer logic can be introduced: (i) on the local level the property of
a random object is specified; (ii) on the global level the fraction of objects
satisfying this local property is expressed. In the following we introduce Mean-
Field Continuous Stochastic Logic (MF-CSL) and provide the algorithms for
checking MF-CSL properties of a global mean-field model.

The chapter is further organized as follows. Section 8.1 provides syntax
and semantics of MF-CSL. Model-checking properties of the local model is
discussed in Section 8.2. Section 8.3 describes algorithms for model-checking
MF-CSL properties on the global level and illustrates both sets of algorithms
using the running example. A summary of the chapter in provided in Sec-
tion 8.4.

8.1 CSL and MF-CSL

Let us first recall how the properties of a random object can be expressed and
checked. As discussed in Section 2.1, the model of one object in a mean-field
system is an ICTMC. Therefore, the logic CSL [6] for checking properties of
CTMCs can be used for describing properties on the local level. In the following
we recall the syntax and semantics of CSL, and explain how CSL properties of
the local model can be checked.

108 8.1 CSL and MF-CSL

Definition 8.1.1 (Syntax of CSL). Let p ∈ [0, 1] be a real number, �	 ∈ {≤, <
,>,≥} a comparison operator, I ⊆ R≥0 a non-empty bounded time interval and
LAP a set of local atomic propositions with lap ∈ LAP . CSL state formulas
Φ are defined by:

Φ ::= tt | lap | ¬Φ | Φ1 ∧ Φ2 | S��p(Φ) | P��p(φ),

where φ is a path formula defined as:

φ ::= χIΦ | Φ1 U I Φ2.

�

To define the semantics of path formulas we first recall the notion of a path
as in [6]. An infinite path1 σ is a sequence s0

t0→ s1
t1→ s2

t2→ ... with, for i ∈ N;
si ∈ Sl and ti ∈ R>0 such that Q(si,si+1)(m(

∑i
j=0 tj)) > 0 for all i. A finite

path σ is a sequence s0
t0→ s1

t1→ ...sh−1
th−1→ sh such that sh is absorbing, and

Q(si,si+1)(m(
∑i

j=0 tj)) > 0 for all i < h. For an infinite path σ, σ[i] = si
denotes for i ∈ N the (i + 1)st state of path σ. The time spent in state si is
denoted by δ(σ; i) = ti. Moreover, with i the smallest index with t ≤ ∑i

j=0 tj ,
let σ@t = σ[i] be the state occupied at time t. For finite paths σ with length
h + 1, σ[i] and δ(σ; i) are defined in the way described above for i < h only
and δ(σ;h) = ∞ and δ@t = sh for t >

∑h−1
j=0 tj . PathMl

(si,m) is the set of
all finite and infinite paths of the local model Ml that start in state si given
the state m of the overall model MO, and PathMl

(m) includes all (finite and
infinite) paths of Ml, which depends on the overall system state m (global
time) if MO is time-inhomogeneous. A probability measure Pr(m) on set of
paths can be defined as in [6].

When the local model is time-homogeneous the semantics of CSL formulas
is well known. However, in any non-trivial mean-field model, the transition
rates of the local model Ml are not constant. According to Definition 2.3.1
the rates of the local model Ml may depend on the state of the global model
MO, which changes with time. There are two ways to formalize this: the local
rates depend on (i) the current state m, which changes with time, or (ii) the
global time. While the first is more intuitive, it does not allow transition rates

1Note that m(
∑i

j=0 tj) is the global state of the overall model MO at the time of the
i’th transition.

Mean-Field Continuous Stochastic Logic 109

to depend explicitly on global time. For ease of notation, in the following we
restrict ourselves to models that only depend on the overall state. Note that
our approach can easily be extended to models that explicitly depend on global
time and the proposed algorithms can handle both cases.

Since the local model changes with the overall system state, the satisfaction
relation for a local state or path depends on the global state m, therefore, we
introduce the satisfaction relation |=m, which is given as follows:

Definition 8.1.2 (Semantics of CSL). Satisfaction of CSL state and path
formulas for local mean-field model Ml is given as follows:

s |=m tt ∀s ∈ Sl,
s |=m lap iff lap ∈ L(s),
s |=m ¬Φ iff s 	|=m Φ,
s |=m Φ1 ∧ Φ2 iff s |=m Φ1 and s |=m Φ2,
s |=m S��p(Φ) iff πMl

(s, Sat(Φ, m̃)) �	 p,
s |=m P��p(φ) iff ProbMl

(s, φ,m) �	 p,
σ |=m χIΦ iff σ[1] is defined, and

σ[1] |=m(δ(σ,0)) Φ ∧ δ(σ, 0) ∈ I,

σ |=m Φ1 U I Φ2 iff ∃t′ ∈ I : (σ@t′ |=m(t′) Φ2)

∧(∀t′′ ∈ [0, t′)(σ@t′′ |=m(t′′) Φ1)),

where

• m is the occupancy vector (state of the overall model) at time 0, and m(t)
is the occupancy vector at time t;

• s is a state of the local model Ml;

• I ⊆ R≥0 is a non-empty bounded time interval;

• Sat(Φ,m) = {s′ ∈ Sl : s′ |=m Φ} is the satisfaction set of the CSL
formula Φ defined as in [6];

• πMl
(s, Sat(Φ, m̃)) =

∑
sj∈Sat(Φ,m̃) π

Ml
(s, sj , m̃), describes the steady state

probability to be in a state from Sat(Φ, m̃), where m̃ is the stationary dis-
tribution of the global model, cf. [6];

110 8.1 CSL and MF-CSL

• ProbMl
(s, φ,m) is defined as in [6], i.e., the probability measure of all

paths σ ∈ PathMl
(s,m) that satisfy φ when the system is starting in

state s:

ProbM
l
(s, φ,m) = Pr{σ ∈ PathM

l
(s,m)|σ |=m φ}.

�

Although m is referred to as the m vector at time 0, this is only for ease of
discussion, without loss of generality. In fact, the m argument to |= is just the
global state at the time at which one checks the satisfaction relation. This is
illustrated in the above definitions for next and until, in which satisfaction at
a future time t′ is denoted by writing |=m(t′). Throughout the definition, m(t)
is the occupancy vector at future time t, which can be obtained by solving the
ODEs (2.1) for time t with m as initial condition.

Recall that not in all models the mean-field approximation is valid for
the steady-state; clearly, the steady-state operator S should only be used for
models in which it is (see Section 2.3).

The properties of interest of the overall mean-field model differ from the
properties which can be described by CSL. Therefore, in order to reason at the
level of the overall model in terms of fractions of objects we introduce an extra
layer “on top of CSL” that defines the logic CSL for mean-field models, denoted
MF-CSL. The latter is able to describe the behavior of the overall system in
terms of the behavior of random local objects.

Definition 8.1.3 (Syntax of MF-CSL). Let f ∈ [0, 1] be a real number, and
�	 ∈ {≤, <,>,≥} a comparison operator. MF-CSL formulas Ψ are defined as
follows:

Ψ ::= tt | ¬Ψ | Ψ1 ∧Ψ2 | E��f (Φ) | ES��f (Φ) | EP��f (φ),

where Φ is a CSL state formula and φ is a CSL path formula.
�

In this definition we introduce three expectation operators: E��f (Φ), ES��f (Φ)
and EP��f (φ), with the following interpretation:

• E��f (Φ) denotes whether the fraction of objects that are in a (local) state
satisfying a general CSL state formula Φ fulfills �	 f ;

Mean-Field Continuous Stochastic Logic 111

• ES��f (Φ) denotes whether the fraction of objects that satisfy Φ in steady
state, fulfills �	 f ;

• EP��f (φ) denotes whether the probability of a random object to satisfy
path-formula φ fulfills �	 f .

Let us consider the virus spread example to illustrate the expressive power of
MF-CSL for mean-field models.

Example 8.1.4. In order to express the property that not more than 5% of
the computers are infectedY (i.e., these computers belong to the group Y and
are infected), the following formula is used:

E≤0.05 (infectedY) .

The percentage of all computers which happen to belong to the group X and
have a probability lower than 10% of going from not infected to active infected
state within 3 hours is greater than 40%:

E>0,4

(
P<0.1(not infectedX U [0,3] activeX)

)
.

If one wants to ensure that the probability of a computer to get infected in group
Z within two hours from now is less than 50%:

EP<0.5(tt U [0,2] infectedZ).

Note that in the formula above the initial state of the individual is not taken
into account. If the percentage of not infected computers in the group Z which
will become infected within the next two hours is of interest, the formula has
to be changed accordingly:

Ψ = EP<0.5(not infectedZ U [0,2] infectedZ).

If in the long run the system has to have a low probability (less than 2%) for a
random computer to be infected in the group Z we express this as:

ES<0.02(infectedZ).

©
The formal definition of the MF-CSL semantics is as follows:

112 8.2 Checking CSL formula at the local level

Definition 8.1.5 (Semantics of MF-CSL). The satisfaction relation |= for
MF-CSL formulas and states m = (m1,m2, . . . ,mK) ∈ So of the overall mean-
field model is defined by:

m |= tt ∀ m ∈ So,
m |= ¬Ψ iff m 	|= Ψ,
m |= Ψ1 ∧Ψ2 iff m |= Ψ1 ∧m |= Ψ2,

m |= E��f (Φ) iff

(
K∑
j=1

mj · Ind(sj |=mΦ)

)
�	 f ,

m |= ES��f (Φ) iff

(
K∑
j=1

mj · πMl
(sj , Sat(Φ,m))

)
�	 f ,

m |= EP��f (φ) iff

(
K∑
j=1

mj · ProbMl
(sj , φ,m)

)
�	 f ,

where Sat(Φ,m), πM(s, Sat(Φ,m)), ProbMl
(s, φ,m) are defined as in Defin-

ition 8.1.2; and Ind(sj |=mΦ) is an indicator function, which indicates whether
a local state sj ∈ Sl satisfies formula Φ for a given overall state m, i.e.,

Ind(sj |=mΦ) =

{
1, if sj |=m Φ,
0, if sj 	|=m Φ.

�

To check an MF-CSL formula at the global level, the local CSL formula has
to be checked first, and the results are then used at the global level. As
discussed above, the local model Ml is a time-inhomogeneous CTMC, i.e.,
transition rates vary with the state of the overall model MO, which makes
model-checking at the local level non-trivial. We discuss model-checking CSL
formulas at the local modelMl in the next section. The algorithms to compute
the satisfaction of the MF-CSL formulas at the global model are presented in
Section 8.3.

8.2 Checking CSL formula at the local level

In this section we first recall algorithms for model-checking CSL on time-
homogeneousMarkov chains in Section 8.2.1. The CSL operators which require
a different approach for the time-inhomogeneous local model are discussed in

Mean-Field Continuous Stochastic Logic 113

Sections 8.2.2, 8.2.3, and 8.2.4. The satisfaction set development for a given
CSL formula on a local model Ml is addressed in Section 8.2.5.

8.2.1 CSL for local mean-field models

All CSL operators can be divided into two groups:

• time-independent operators : lap2, ¬, ∧.
• time-dependent operators : P��p and S��p, where P��p includes path oper-
ators X and U .

The CSL operators can be nested according to Definition 8.1.1. Model-checking
of the CSL formula is done by building the parse tree and performing the sat-
isfaction set development of the individual operators recursively, as described
in [6].

All time-independent CSL operators can be checked using the standard
methods (see [6]) due to the independence of the results on time. Therefore,
model-checking these operators is not addressed any further.

Properties that include the Next operator are rarely used in a real-life scen-
arios, therefore, we omit the discussion of such formulas and refer to [18] for al-
gorithms for checking the CSL Next operator on the local time-inhomogeneous
CTMC. A discussion on the steady-state operator on the local mean-field model
Ml will be provided in Section 8.2.4.

Since the main challenge lies in model-checking the time-dependent op-
erators, and in the context of this thesis in checking the until formula, let us
recall the interval until formula Φ1U

[t1,t2]Φ2 for an arbitrary time-homogeneous
CTMC M, as in [6].

For model-checking such a CSL formula, we need to consider all possible
paths, starting in a Φ1-state at the current time and reaching a Φ2-state during
the time interval [t1, t2] by only visiting Φ1-states on the way. We can split
such paths in two parts:

• the first part models the path from the starting state s to a Φ1-state s1;

• the second part models the path from s1 to a Φ2-state s2 only via Φ1-
states.

2Note that the atomic property could be defined as a time-dependent operator, however,
according to Definition 2.1.2, it belongs to the time-independent group.

114 8.2 Checking CSL formula at the local level

In the first part of the path, we only proceed along Φ1-states, thus if any
state that does not satisfy Φ1 is visited the path will not satisfy the formula,
therefore, these states can be made absorbing. As we want to reach a Φ2-state
via Φ1-states in the second part, we can make all states that do not fulfill
Φ1 and satisfy Φ2 absorbing. We therefore need two transformed CTMCs3:
M[¬Φ1] and M[¬Φ1∨Φ2], where M[¬Φ1] is used in the first part of the path,
for t ∈ [0, t1], and M[¬Φ1 ∨ Φ2] is used in the second, for t ∈ [t1, t2].

In order to calculate the probability for such a path, we accumulate the
multiplied transition probabilities for all triples (s, s1, s2), where s1 |= Φ1 is
reached before time t1, and s2 |= Φ2 is reached within time t2 − t1 (note that
this is only applicable for time-homogeneous CTMCs), i.e.,

ProbM(s,Φ1U
[t1,t2]Φ2) =∑

s1|=Φ1

∑
s2|=Φ2

πM[¬Φ1]
s,s1 (t1) · πM[¬Φ1∨Φ2]

s1,s2 (t2 − t1).
(8.1)

Hence, CSL until formulas can be checked as a combination of two reachability
problems, as shown in Equation (8.1), namely πM[¬Φ1]

s,s1 (t1) and π
M[¬Φ1∨Φ2]
s1,s2 (t2−

t1) that can be computed by performing a transient analysis on the transformed
CTMCs. Note that Equation (8.1) is valid for t1 > 0 and t2 > 0, if t1 = 0 the
first part of the path (πM[¬Φ1]

s,s1 (t1)) can be omitted.
In the following we discuss the methods for checking until formulas for a

local mean-field model. Since the results of the model-checking procedure for
an ICTMCs may depend on time we first provide the algorithms for checking
the formula for a given moment of time, namely, t = 0. And afterwards the
calculation of the time-dependent probability for an until formula to hold will
be addressed. We start the description of the algorithms with the single (non-
nested) until operator in Section 8.2.2, then we proceed with the more involved
nested case in Section 8.2.3 .

8.2.2 Single until

Due to the time-inhomogeneity of the local mean-field model, standard meth-
ods for model-checking timed operators can not be used. Recently, model-
checking algorithms for a time-bounded fragment of CSL were proposed in

3We reuse the notation for a modified CTMC from [6], where the formula in brackets
refers to the set of states which are made absorbing.

Mean-Field Continuous Stochastic Logic 115

[18]. We adapt the model-checking algorithms presented in [18] for use on
the local model Ml of a mean-field model. In [18] explicit dependence of the
local rates on time was chosen, while in MF-CSL the dependence on the cur-
rent global state m is of interest. Therefore, the approach from [18] has to be
modified in order to reason about the newly introduced satisfaction relation
|=m.

In the following we discuss model-checking of non-nested CSL interval until
formulas (where the sub-formulas Phi1 and Phi2 are atomic properties and
logical combinations) on a time-inhomogeneous CTMC. This can occur in MF-
CSL when using any of the three expectation operators:

E��f (P��p(Φ1U
[t1,t2]Φ2)),

ES��f (P��p(Φ1U
[t1,t2]Φ2)),

EP��f (Φ1U
[t1,t2]Φ2).

Note that due to the restriction to single until formulas here, the validity of
Φ1 and Φ2 does not depend on time.

The core idea of CSL model-checking of until formulas as explained in the
previous section remains unchanged for time-inhomogeneous CTMCs. How-
ever, due to time-inhomogeneity it is not enough to only consider the time
duration; the exact time at which the system is observed must be taken into
account. Hence, we add time t′ to the notation of a time-inhomogeneous reach-
ability probability πMl

s,s1(t
′, T) to denote that we start in state s at time t′ and

have to reach state s1 within T − t′ time units.
The until formula Φ1U

[t1,t2]Φ2 is then again addressed by computing two
reachability problems on the transformed local modelsMl[¬Φ1] andMl[¬Φ1 ∨ Φ2],
respectively; the results are combined similarly to 8.1:

ProbM
l
(s,Φ1U

[t1,t2]Φ2,m) =∑
s1|=mΦ1

∑
s2|=mΦ2

πMl[¬Φ1]
s,s1 (0, t1) · πMl[¬Φ1∨Φ2]

s1,s2 (t1, t2 − t1).
(8.2)

Note that the first reachability probability always has zero as a starting time
since we assume that m is the starting distribution4 at time t = 0.

4For models which depend on global time this needs to be π
Ml[¬Φ1]
s,s1 (t0, t1), where t0

indicates that the system is observed at global time t0.

116 8.2 Checking CSL formula at the local level

8.2.2.1 Reachability probability at a given time

In the following we describe how to compute the reachability probability πMl

s,s1(t
′,

T) for an arbitrary modified local model and a given occupancy vector m that
is observed at time t = 0. Note that this can be used for both modified local
models Ml[¬Φ1] or Ml[¬Φ1 ∨ Φ2], as needed in (8.2).

Let Π′(t′, t′ + T) be the probability matrix of the modified local model,
where Π′

s,s1(t
′, t′+T) is the probability of being in state s1 at time t′+T , given

that we were in state s at time t′. In order to find this transient probability,
the forward Kolmogorov equation is solved with the identity matrix as initial
condition, i.e., Π(t′, t′ + 0) = 1,

dΠ′(t′, t′ + T)

d(T)
= Π′(t′, t′ + T) ·Q′(m(t′ + T)), (8.3)

where Q′(m(t′ + T)) is the rate matrix of the modified local model.
Due to the modifications made in the local model, the transient probability

matrix Π′(t′, t′ + T) contains the reachability probabilities πMl

s,s1(t
′, T) for all

possible states s and s1.
Once the reachability probabilities πMl[¬Φ1]

s,s1 (0, t1) and π
Ml[¬Φ1∨Φ2]
s1,s2 (t1, t2−

t1) have been calculated using (8.3), the probability ProbM
l
(s,Φ1 U

[t1,t2]Φ2,m)
can be computed according to Equation (8.2), which allows to check the satis-
faction relation for a given occupancy vector m according to Definition 8.1.2.

8.2.2.2 Reachability probability as a function of time

Keeping the occupancy vector m and time t′ as initial conditions of the mean-
field model, the validity of a CSL formula may change when it is evaluated at
a later moment in time t ∈ [t′, θ], where θ is a predefined upper bound of the
evaluation time. In the following we discuss how the reachability probability
πMl

s,s1(t, T) depends on its evaluation time t while T is kept constant.
First, the probability matrix Π′(t′, t′ + T) is derived according to Equa-

tion (8.3), where t′ is predefined. Next, the ODE describing the dependence
of the transient probability on time t is derived by combining the forward and
backward Kolmogorov equations using the chain rule:

dΠ′(t, t+ T)

dt
= −Q′(m(t)) ·Π′(t, t+ T)

+ Π′(t, t+ T) ·Q′(m(t+ T)).
(8.4)

Mean-Field Continuous Stochastic Logic 117

Finally, the time-dependent probability matrix Π′(t, t+T) can be obtained by
solving Equation (8.4) with initial condition Π′(t′, t′ + T). This can be done
either analytically or numerically, e.g., with the tool Wolfram Mathematica
[103] as used in this thesis.

As mentioned above, the validity of a local CSL until formula may change
when the system is evaluated at a later moment in time t due to the changing
overall state. The time-dependent probability

ProbM
l
(s,Φ1U

[t1,t2]Φ2,m, t)

to take a (Φ1U
[t1,t2]Φ2)-path in Ml, when starting in state s at time t, can be

computed similar to Equation (8.2), by taking into account the time t that has
elapsed since the initial condition m was observed:

ProbM
l
(s,Φ1U

[t1,t2]Φ2,m, t) =∑
s1|=mΦ1

∑
s2|=mΦ2

πMl[¬Φ1]
s,s1 (t, t+ t1) · πMl[¬Φ1∨Φ2]

s1,s2 (t+ t1, t+ t2 − t1).
(8.5)

Note that using Kolmogorov equations for solving reachability problems on the
local models Ml is efficient due to the fact that the local state space is usually
quite small (see [18]).

8.2.3 Nested until

The method described in the previous section can be used when both Φ1 and
Φ2 do not depend on time, i.e., when we do not have nested until formulas. In
the following let us consider the following nested until formula:

P��f

(
Φ1U

[t0,T]
(
P��p(Φ2U

[t1,t2]Φ3)
))

.

In order to evaluate a nested until formula the corresponding parse tree is
built, as in the time-homogeneous case, and the satisfaction sets of all sub-
formulas need to be computed. The satisfaction set of the sub-formula Γ =
P��q(Φ2U

[t1,t2]Φ3), however, changes with time. To compute this set for a
given t ∈ [t0, T], first ProbM

l
(s,Φ2U

[t1,t2]Φ3,m, t) needs to be computed for
all s ∈ S l according to Equation (8.5). Then the time-dependent satisfaction
set of Γ is given as:

Sat(Γ,m, t) = {s ∈ S l | ProbMl
(s,Γ,m, t) �	 p}. (8.6)

118 8.2 Checking CSL formula at the local level

More details on the computation of the satisfaction set are provided in Sec-
tion 8.2.5. Having computed this set then in principle allows to model-check
the nested until formula as a combination of two reachability problems, as in
Equation (8.2). When replacing Φ2 by Γ in this equation, it becomes clear that
model-checking a nested until formula requires computations on the modified
local model Ml[¬Φ1 ∨ Γ]. This is far from trivial, since the satisfaction set of
Γ is time-dependent which results in a modified local model that also changes
with time.

Therefore, similar to the single until we provide first the algorithm for com-
puting the reachability probability for a given time t = 0 (see Section 8.2.3.1),
then in Section 8.2.3.2 we discuss how to calculate the time-dependent reachab-
ility probability for t ∈ [t′,Θ]. Note, however, that in this case the reachability
problems are solved for the time-varying sets of safe and goal states.

8.2.3.1 Time-varying set reachability

In the following, we describe how in general a time-bounded reachability prob-
lem πM[¬Γ1∨Γ2](t′, T) with time-dependent formulas Γ1 and Γ2 can be evalu-
ated, similar to [18]. Note that t′ indicates the starting time and T the duration
of the time interval we are interested in.

At first we have to determine the so-called discontinuity points, i.e., the
time points T0 = t′ ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ Tk+1 = T + t′, where at least
one of the satisfaction sets Sat(Γ1) or Sat(Γ2) changes. After that, we can
integrate separately on each time interval (Ti, Ti+1) for i = 0, ..., k.

To ensure that only Γ1 states are visited before a Γ2 state is reached, we
need to modify the local model Ml for each time interval, as follows:

• A new goal state s∗ which remains the same for all time intervals is
introduced.

• All ¬Γ1 and Γ2 states are made absorbing.

• All transitions leading to Γ2 states are redirected to the new state s∗.

Given the modified local model Ml, the transient probability matrix for each
time interval Π′(Ti, Ti+1) is found using the forward Kolmogorov equation,
according to Equation (8.3).

Upon “jumps” between time intervals (Ti−1, Ti) and (Ti, Ti+1) it is possible
that a state that satisfied Γ1 in the previous time interval does not satisfy Γ1 in

Mean-Field Continuous Stochastic Logic 119

the next. In this case the probability mass in this state is lost, since this path
does not satisfy the reachability problem anymore. In the case that a state
remains satisfying Γ1 or a Γ1-state is turned into a Γ2-state, the probability
mass has to be carried over to the next time interval. This is described by a
matrix ζ(Ti) of size (|Sl|+ 1)× (|Sl|+ 1) constructed in the following way:

• For each state s ∈ Sl which satisfies ¬Γ1 ∧ ¬Γ2 before and after Ti, we
set ζ(Ti)s,s = 1.

• For each state s ∈ Sl which satisfies ¬Γ1∧¬Γ2 before Ti and Γ2 after Ti,
we set ζ(Ti)s,s∗ = 1.

• For the new goal state s∗ the entry always equals one, that is, ζ(Ti)s∗,s∗ =
1.

• All other elements of ζ(Ti) are set to 0.

The probability to reach a Γ2 state before time T has passed when starting in
a ¬Γ2 state at time t′ is then given by the matrix Υ(t′, t′ + T):

Υ(t′, t′+T) = Π′(t′, T1) ·ζ(T1) ·Π′(T1, T2) ·ζ(T1) . . . ζ(Tk) ·Π′(Tk, t
′+T). (8.7)

The probability to reach the goal state s∗ is unconditioned on the starting
state by adding 1 for all Γ2-states, i.e., for the cases, when the starting state
satisfied Γ2:

π
[¬Γ1∨Γ2]
s,s∗ (t′, t′ + T) = Υs,s∗(t

′, t′ + T) + 1{s ∈ Sat(Γ2,m, t′)}. (8.8)

The way of calculating reachability probabilities as described above is based
on the method proposed in [18]. The only difference lies in the way of handling
the probability of reaching the goal state. In [18] the state space is doubled
and all goal states are considered separately, which increases the computational
complexity and does not add any extra information. In our approach, only one
extra state is added in order to simplify the calculations.

Another way of reducing the computational complexity would be to lump
all Γ2-states and all ¬Γ1-states in the model itself. However, in the case when
the satisfaction sets of Γ1 and Γ2 change with time, the state space of the
modified local model will change at each discontinuity point, which would
require a more complicated calculation of (8.7) and (8.8).

120 8.2 Checking CSL formula at the local level

8.2.3.2 Reachability probability as a function of time

To evaluate a nested until formula for varying points in time t ∈ [t′; θ], in the
following we adapt the two components of Equation (8.8) to allow for varying
evaluation points.

Since only the first and the last component of Υ(t′, t′ + T) depend on t′,
we rewrite Equation (8.7) for ease of notation:

Υ(t′, t′ + T) = Π′(t′, T1) · Λ(T1, Tk) ·Π′(Tk, t
′ + T), (8.9)

where Λ(T1, Tk) = ζ(T1) ·Π′(T1, T2) · · · · ·Π′(Tk−1, Tk) · ζ(Tk).
To explicitly take into account the change of Υ(t, t+T) with time, the fol-

lowing differential equation is constructed using forward and backward Kolmogorov
equations:

dΥ(t, t+ T)

dt
= −Q(t) ·Υ(t, t+ T) + Υ(t, t+ T) ·Q(t+ T), (8.10)

where Q(t) is the rate matrix of Ml. Then in order to calculate Υ(t, t + T)
Equation (8.10) is solved for t ∈ [t′, θ]. Note that when during the integration
either t or t + T reaches a discontinuity point Ti, the computation has to
be reset, namely, Υ(t, t + T) has to be recomputed; and the computation is
resumed and ODE (8.10) is used until the next discontinuity point.

The complete algorithm for this is as follows:

1. All the discontinuity points t′ = T0 < T1 < · · · < Tk < Tk+1 = θ + T
are found. In addition the points T ′

i = Ti + T are considered for all
i = 0, 1, . . . , k and pre(T ′

i) is defined as the largest Tj preceding T ′
i and

post(T ′
i) is defined as the smallest Tj after T ′

i .

2. The probability matrices Π′(Ti, Ti+1) and Π′(pre(T ′
i), T

′
i) are calculated

for all i ≤ k using the forward Kolmogorov equation (8.3).

3. For each discontinuity point Ti, the matrix ζ(Ti) is computed as defined
in Section 8.2.3, for all i = 1, 2, .., k.

When integrating Equation (8.10) for all t ∈ [t′, θ], due to the discontinuity
points, we may not have a single solution Υ(t, t + T) that can be used for all
values of t. For the intervals between discontinuity points, Υ(t, t+ T) is given
by the solution of ODE (8.10). At each discontinuity point, Υ(Ti, Ti + T) is

Mean-Field Continuous Stochastic Logic 121

recalculated and the integration is resumed until the next discontinuity point
is reached.

At the first discontinuity point, i.e., T0 = t′, Υ(t′, t′ + T) is given by Equa-
tion (8.7), and for all T0 ≤ t ≤ t∗ = min{T1, post(T

′
0)− T} Υ(t, t+ T) is given

by the solution of ODE (8.10). Then Υ(t∗, t∗ + T) is recalculated, depending
on whether t or t+ T hits a discontinuity point Ti, as follows:

• If t∗ = Ti, then Υ(Ti;T
′
i) has to be recomputed as follows:

Υ(Ti, T
′
i) = Π′(Ti, Ti+1) · Λ(Ti+1, pre(T

′
i)) ·Π′(pre(T ′

i), T
′
i).

The integration of the ODE (8.10) is resumed and Υ(t, t+T) is calculated
for Ti ≤ t ≤ min{Ti+1, post(T

′
i) − T ′

i + Ti} until the next discontinuity
point is reached.

• If t∗ + T = Ti, then to account for the changes at the discontinuity
point Υ(Ti − T ;Ti) has to be multiplied on the right by ζ(Ti). The
integration of the ODE (8.10) is resumed and Υ(t, t + T) is calculated
for Ti−T ≤ t ≤ min{post(Ti−T), Ti+1−T} until the next discontinuity
point is reached.

This procedure is repeated until the time bound of the evaluation t = θ is
reached. Note that the number of the discontinuity points is limited by the
depth of nesting of the until-operator, which is low in practice, therefore the
numerical complexity of the algorithm is not a practical issue.

Finally, the time-dependent reachability probability can be computed as
follows:

π
[¬Γ1∨Γ2]
s,s∗ (t, t+ T) = Υs,s∗(t, t+ T) + 1{s ∈ Sat(Γ2,m, t)}. (8.11)

Recall that the second component of this equation is also time-dependent and
has to be reconsidered at each discontinuity point.

8.2.4 Steady-state operator

In the following we discuss how to model-check the steady-state operator
S��p(Φ) for a given overall distribution m. Recall that this is only mean-
ingful for mean-field models which are known to be also valid for the long run
behaviour (see, e.g., [71]).

122 8.2 Checking CSL formula at the local level

Since the long run behavior of the individual object reflects the behavior of
the whole model, the stationary distribution m̃ of the overall model can be used
as the steady-state distribution of the local model πMl

(s, sj , m̃). Therefore,
given the satisfaction set Sat(Φ, m̃) of the formula Φ, which can be found as
will be explained in the next section, the steady state operator can be checked
according to Definition 8.1.2, as follows:

πM(s, Sat(Φ, m̃)) =
∑

sj∈Sat(Φ,m̃)

πMl
(s, sj , m̃) =

∑
sj∈Sat(Φ,m̃)̃

mj . (8.12)

The steady-state probability does not depend on time, therefore, the satisfac-
tion relation on the steady-state operator does not depend on time and the
probability of the formula to hold remains constant at all times:

πM(s, Sat(Φ, m̃), t) =
∑

sj∈Sat(Φ,m̃)̃

mj . (8.13)

8.2.5 Satisfaction set of the local model Ml

The satisfaction set of a CSL formula on a time-inhomogeneous CTMC is con-
structed using a parse tree [6], as in the time-homogeneous case. First the sat-
isfaction sets of the sub-formulas have to be developed. For time-independent
operators the procedure is the same as explained in [6] and the satisfaction
set does not change with time, therefore we do not discuss these operators
here. For time-dependent operators both the satisfaction set for a given time
t′ and the time-dependent satisfaction set for a given time interval [t′, θ] can
be computed, as follows.

For a given time t′ and the overall system statem we obtain the satisfaction
set of the probability operator:

Sat(P��p(φ),m) = {s | ProbM
l
(s, φ,m) �	 p}, (8.14)

where ProbMl
(s, φ,m) is given by Equation (8.2).

According to Equation (8.12) the satisfaction set of the steady-state oper-
ator is as follows:

Sat(S��p(Φ),m) = {s |
∑

sj∈Sat(Φ,m)

m̃j �	 p}. (8.15)

Mean-Field Continuous Stochastic Logic 123

The time-dependent satisfaction set of until formula is developed similarly,
but Equation (8.5) is used:

Sat(P��p(φ),m, t) = {s | ProbM
l
(s, φ,m, t) �	 p}, (8.16)

The steady-state does not change with time, therefore:

Sat(S��p(Φ),m, t) = {s |
∑

sj∈Sat(Φ,m,t)

m̃j �	 p}. (8.17)

8.2.6 Run time

In this section we briefly discuss the complexity of the numerical (approximate)
algorithms for checking CSL properties of a local mean-field model, presented
above. The full discussion on the decidability and convergence can be found
in [19], therefore, we will not provide it here.

As was discussed above, the presented algorithms are computationally de-
manding, due to the need of iterative computations of the solution of Kolmogorov
equations. However, in practice, when using modern tools, e.g., Wolfram
Mathematica [103], these computations take a fraction of second to couple
of seconds. It is a very large improvement compared to applying the statistical
model checking to a large population of interaction objects.

In Table 1 of [19] a comparison of the running times of the algorithms
presented above to stochastic model-checking for different population sizes has
been presented. The local CSL model-checking appears to be between 500 to
1000 times faster (0.05−0.1 sec. vs 5−100 sec), than statistical model-checking
for a population of 103 objects, with a negligible loss in accuracy. Moreover, the
running time of the CSL model-checking on a local ICTMC does not depend
on a size of population. Therefore, a very large population can be analysed
using the above algorithms while the statistical model-checkers might fail to
converge if the size of the population is too large.

8.3 MF-CSL model-checking at the global level

Model-checking MF-CSL formula consists of two parts: checking the satisfac-
tion relation for individual states and developing the satisfaction set of a given
MF-CSL formula Ψ. Both parts include CSL model-checking on the local
level, as has been discussed in Section 8.2. In this section we proceed with

124 8.3 MF-CSL model-checking at the global level

the satisfaction relation and show how to build the satisfaction set of MF-CSL
operators on the overall model MO.

8.3.1 Satisfaction for individual states

Given the results on the local level, checking individual states of the global
model can be done by straight-forward application of Definition 8.1.5. We
briefly discuss checking the satisfaction relation between a given occupancy
vector m and expectation operators in the following.

For the expectation operator E��f (Φ) the satisfaction set of the local CSL
formula is used in essence to define the indicator function, which allows to
check the following inequality:⎛⎝ K∑

j=1

mj · Ind(sj |=mΦ)

⎞⎠ �	 f.

If the inequality holds for a given occupancy vector m, this occupancy vector
satisfies the expectation formula.

For the expected probability operator EP��f (φ) we check⎛⎝ K∑
j=1

mj · ProbM
l
(sj , φ,m)

⎞⎠ �	 f,

where the probability ProbM
l
(s,Φ,m) is computed as described in Section 8.2.

Since the long run behavior of an individual object reflects the behavior of
the whole model, checking the satisfaction of a steady-state MF-CSL formula
ES��f (Φ,m) simplifies to the following expression:

K∑
j=1

πMl
(sj , Sat(Φ,m, t)) ·mj = πMl

(s, Sat(Φ,m, t)).

Hence, the expected steady-state operator on the global level mirrors the
steady-state operator on the local level, when the steady-state exists (see [71]).
Therefore the stationary distribution m̃ of the global model is used as steady-
state distribution of the local model and the expected steady-state operator is

Mean-Field Continuous Stochastic Logic 125

checked using Equation (8.12), that is,⎛⎝ ∑
sj∈Sat(Φ,m,t)

m̃j

⎞⎠ �	 f.

The occupancy vector satisfies the given steady-state formula if the above
inequality holds.

8.3.2 Satisfaction (time validity) set development

Traditionally, the satisfaction set of a given formula is the set of states of
the model which satisfies a given formula. In the context of MF-CSL model-
checking, this would result in a set of all occupancy vectorsm satisfying a given
MF-CSL formula. While such a set can be built for time-independent MF-
CSL operators, it is not a trivial task for time-dependent operators, since the
model-checking on the local modelMl would have to be done without knowing
the initial conditions, i.e., the occupancy vector. Theoretically speaking, in
some cases the analytical solution of the ODEs (2.1) can be used, however, in
practice these solutions are not easy (or even impossible) to find. Furthermore,
the procedure of model-checking time-dependent CSL operators often includes
numerical evaluation, therefore, using the general solution seems not feasible.

When, for example, discretization of the infinite state space of the overall
mean-field model is done, and the validity of a given formula is checked in each
discrete point, the full satisfaction set can be approximated. However, the
complexity of such an approximation grows with the number of local states, and
the fineness of the grid. Moreover, even though the algorithms for checking CSL
properties of the local model are indeed more efficient, than, e.g., statistical
model-checking (see Section 8.2.6), this gain in efficiency might not be enough
for approximating the full satisfaction set.

Despite the above arguments, once the initial occupancy vector is fixed, the
time instances where a MF-CSL formula holds when evaluated at later times
t ∈ [0, θ] can be found. From this point of view, the conditional satisfaction
set or the Time Validity Set of the MF-CSL formula is defined as follows.

Definition 8.3.1 (Time Validity Set). Let θ > 0 be a predefined time bound,
Ψ be an MF-CSL formula, and initial conditions of the mean-field model MO

be an occupancy vector m(0) = m. The Time Validity Set (TVS) contains

126 8.3 MF-CSL model-checking at the global level

all time intervals, where Ψ holds, for a given m, and θ:

TVS(Ψ,m, θ) = {t ∈ [0, θ] | m(t) |= Ψ}.

�

In the following, we discuss how to develop the time validity set for the
MF-CSL expectation operators. Table 8.1 summarizes the equations which
define this set for the expectation operators. The algorithms for calculating
the corresponding TVS are developed in the remainder of this section.

For some of the MF-CSL operators the development of the TVS is straight-
forward:

TVS(tt,m, θ) = [0, θ],
TVS(¬Ψ,m, θ) = [0, θ] \ TVS(Ψ,m, θ),
TVS(Ψ1 ∧Ψ2,m, θ) = TVS(Ψ1,m, θ) ∩ TVS(Ψ2,m, θ).

To calculate TVS of the expectation operator the set of inequalities has to
be built using Definition 8.1.5 as presented in Table 8.1. In the following we
discuss how these inequalities are built for each operator separately.

A set of inequalities defines the constraints on the validity set of the expect-
ation operator TVS(E��f (Φ),m, θ). To construct these inequalities one has to
find the satisfaction set Sat(Φ,m, t) of the local CSL state formula Φ (see Sec-
tion 8.2.5). When the time dependent satisfaction set of the CSL formula Φ is
found, the following steps have to be taken in order to find TVS(E��fΦ,m, θ):

1. Discontinuity points 0 < τ1 < τ2 < · · · < τh < θ, where at least one state
of the local model leaves or enters the satisfaction set Sat(Φ,m, t), have
to be found.

2. The indicator function Ind
[τi;τi+1]

sj |=mΦ
(m, t), which shows whether a local

state sj satisfies formula Φ, is then defined on each time interval [τi; τi+1].

3. The inequality is constructed at each time interval [τi; τi+1] according to
Definition 8.1.5, as shown in the first row of Table 8.1.

4. For each time interval, the constraints on the occupancy vector m(t) are
found by solving the respective inequalities, where t ∈ [τi; τi+1].

Mean-Field Continuous Stochastic Logic 127

MF-CSL Set of inequalities Computation
operator to build TVS(Ψ,m, θ) on Ml

Ψ = E��p(Φ)

(
K∑
j=1

mj(t) · Ind[τi;τi+1]

sj |=mΦ
(m, t)

)
�	 f,

∀τi ∈ [0, θ]

Sat(Φ,m, t)

Ψ = ES��p(Φ)

(∑
sj∈Sat(Φ,m̃,t)

mj(t) · m̃j

)
�	 f Sat(Φ, m̃, t)

Ψ = EP��p(φ)

(
K∑
j=1

mj(t) · ProbM
l

(sj , φ,m, t)

)
�	 f ProbM

l

(sj , φ,m, t)

Table 8.1: Time validity set development for the MF-CSL formulas

5. Recall that ODEs (2.1) define all possible occupancy vectors in the time
interval [τi; τi+1]. These are checked against the above constraints, and
the time intervals at which the occupancy vector satisfies the inequalities
are added to the time validity set.

As mentioned in Section 8.3.1, the steady-state operator at the global level
mirrors the steady-state operator at the local level5. Therefore, according to
Equation (8.13) the probability πM(s, Sat(Φ, m̃), t) is used for the computation
of TVS(ES��f (Φ),m, θ). The overall distribution, given by the ODEs (2.1), is
then checked against the above inequalities, and all the time instances where
the inequalities are satisfied are added to the time validity set.

TVS(EP��f (φ),m, θ) is found in a similar way as TVS(E��f (Φ),m, θ), how-
ever, instead of obtaining the satisfaction set of the CSL formula at the local
level, the probability of taking path φ has to be calculated for each local state
sj , as given in Equation (8.5).

The inequalities, describing the TVS(EP��f (φ),m, θ), are constructed ac-
cording to Definition 8.1.5 for the whole time interval [0, θ]. These inequalities
are solved together with ODEs (2.1) to find TVS(EP��f (φ),m, θ), as was dis-
cussed above.

5Recall that for a time-inhomogeneous local CTMC, the steady-state operator can only
be used in a limited number of cases, because the stationary distribution of mean-field
models can be approximated using stationary points of the ODEs (2.1) only if the model is
well-behaved (for more information see e.g. [71]).

128 8.3 MF-CSL model-checking at the global level

By nesting formulas, more complex measures of interest can be specified.
Model-checking of nested MF-CSL formulas does not differ from CSL model-
checking [6], and the parse tree of the MF-CSL formula Ψ is built as for CSL
formulas and the model-checking procedure is invoked recursively.

We now proceed with an example of model-checking MF-CSL formulas,
to provide insight in both model-checking formula against a given occupancy
vector m, and in finding the time validity set. We use the model as in Ex-
ample 7.3.1 to illustrate the model-checking procedure.

Example 8.3.2. Let us consider the following formula

Ψ = EP≤0.2(not infectedY U [0,3] infectedY)

and a predefined occupancy vector

m =
1

3
({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}).

In order to check the satisfaction relation m |= Ψ the following three steps need
to be taken:

1. Calculate the time-dependent rates of the local modelMl using the ODEs (7.1).

2. Perform CSL model-checking on the local model Ml in order to compute
ProbMl

(s,not infected U [0,3] infected,m) for all states s ∈ Sl;

3. Check the satisfaction relation m |= Ψ using Definition 8.1.5.

The time-dependent rates of the local model are k∗X,1(t), k
∗
Y,1(t), k

∗
Z,1(t). These

rates are calculated as in Example 7.3.1 using the solution of the ODEs (7.1)
with m as initial condition.

To find ProbMl
(s, not infectedY U [0,3] infectedY ,m) the reachability prob-

lem π
Ml[¬not infectedY ∨infectedY]
s,s1 (0, 3) has to be solved according to the algorithm

described in Section 8.2.2. The local modelMl is modified, namely, all infectedY -
states are made absorbing along with all states in groups X and Z. Let us

Mean-Field Continuous Stochastic Logic 129

denote the generator matrix of the modified local model as:

Q′(m(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 −k∗Y,1(t) k∗Y,1(t) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the Kolmogorov equation (8.3) is used to calculate the transient probability
matrix of the modified model:

dΠ′(0, 0 + T)

d(T)
= Π′(0, 0 + T) ·Q′(m(0 + T)),

with Π(0, 0) = 1. For T = 3 the reachability probabilities are as follows:

Π′(0, 3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0.77 0.23 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The probability that the until formula

φ = not infectedY U [0,3] infectedY
holds for each starting state is calculated using Equation (8.2), and is as fol-
lows:

ProbM
l
(sY,1, φ,m) = π

Ml[infectedY]
sY,1,sY,2 (0, 3) + π

Ml[infectedY]
sY,1,sY,3 (0, 3) = 0.23,

P robM
l
(sY,2, φ,m) = 1,

P robM
l
(sY,3, φ,m) = 1.

130 8.3 MF-CSL model-checking at the global level

For all starting states in groups X and Z the probability that this until formula
holds equals zero, as the starting state does not satisfy infectedY .

According to Definition 8.1.5, the weighted sum of the entries of the oc-
cupancy vector m and the respective probabilities in the local model define the
probability of a given occupancy vector m to satisfy the expected probability
formula EP��f (φ). In this example this probability is calculated as follows:

K∑
j=1

mj · ProbM
l
(sj , φ,m) = mX,1 · 0 + · · ·+mY,1 · 0.23 +mY,1 · 1+

mY,1 · 1 + · · ·+mZ,3 · 0 = 0.3 · 0.23 + 1/30 · 1 = 0.102.

As one can see, the probability of the MF-CSL formula to hold is greater than
0.04, therefore, the occupancy vector m satisfies the formula

EP≤0.2(not infectedY U
[0,3] infectedY).

Example 8.3.3. As was discussed in Section 8.3, the satisfaction of the global
MF-CSL formula may change with time. Let us consider the same formula Ψ
and occupancy vector m, as in Example 8.3.2. In the following we calculate
the time validity set TVS(Ψ,m, 15) for θ = 15.

The calculation of the time-dependent probabilities

ProbM
l
(s,not infectedY U [0,3]infectedY ,m, t)

is done as described in Section 8.2.2, which requires the following steps:

1. The local modelMl is modified by making all infectedY -states, and states
in groups X and Z absorbing, and the transient probability Π(0, 3) is
calculated as in Example 8.3.2.

2. The ODEs, describing the time-dependent transient probability of the
modified model are constructed using both forward and backward Kolmogorov
equations (see Equation (8.4)) .

3. These ODEs are solved using Π(0, 3) as initial condition. The solution
of the ODEs defines the required reachability probabilities.

4. The probabilities ProbMl
(s, φ,m, t) are computed using Equation (8.5).

Mean-Field Continuous Stochastic Logic 131

0 2 4 6 8 10 12 14

0.20

0.21

0.22

0.23

0.24

time

pr
ob
ab
ili
ty

Figure 8.1: ProbMl
(sY,1, not infectedY U [0,3]infectedY ,m, t).

0 2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

time

pr
ob
ab
ili
ty

Figure 8.2: The red solid line shows the time-dependent expected probability
EP(not infectedY U [0,3] infectedY). Two red dashed lines intersect in the point,
where the above probability equals 0.2.

132 8.3 MF-CSL model-checking at the global level

The time-dependent probability ProbMl
(sY,1, φ,m, t) is depicted in Figure 8.1.

The time-dependent probabilities ProbMl
(sY,1, φ,m, t) and ProbMl

(sY,1, φ,m, t)
equal to 1, since these states satisfy infectedY , which means that the until for-
mula holds immediately. This probability equals zero for all starting states in
groups X and Z, since these states do not satisfy neither not infectedY , nor
infectedY .

The probability ProbMl
(sY,1, φ,m, t) is quite stable within the time interval

[0, θ], which coincides with the behaviour of the population as presented in
Figure 7.2. Namely, it decreases initially as active infected computers start
to switch off, and slightly increases when the fraction of infected machines
decreases, namely, around 4 < t < 11 (note that it is essential that infection
has to occur within 3 time units). When the fraction of not infected machines
becomes low this probability starts to decrease.

To calculate the time validity set TVS(Ψ,m, 15) the following steps need to
be taken:

1. Construct the equation describing the time-dependence of the probability
that the MF-CSL formula EP≤0.2(not infectedY U [0,3]minfectedY) holds:

K∑
j=1

mj · ProbM
l
(sj , φ,m, t) = mX,1(t) · 0 + · · ·+mY,1(t)·

· ProbM
l
(sY,1, φ,m, t) +mY,1(t) · 1 +mY,1(t) · 1 + · · ·+mZ,3(t) · 0.

This probability is depicted in Figure 8.2.

2. Find the time points, where the above probability equals 0.2. In the cur-
rent example, this is the case for only t = 7.45.

3. The time validity set of the formula

Ψ = EP≤0.2(not infectedY U [0,3]infectedY)

consists of all time intervals, where the probability of this formula to hold
is less than 0.2. We, therefore, find that, as illustrated in Figure 8.2,
TVS(Ψ,m, θ) = [0, 7.45].

©

Mean-Field Continuous Stochastic Logic 133

8.4 Summary

In this chapter we have introduced a logic and algorithms for doing model-
checking of mean-field models.

Since the details of the individual components are no longer visible in a
mean-field description, existing logics are not suitable to express their prop-
erties. Therefore, we have introduced a new logic, called MF-CSL. This logic
expresses properties of the global model, in terms of what fraction of objects
satisfies local properties, where the latter are CSL-like properties of the indi-
vidual objects.

Checking the local properties is challenging because the models of the in-
dividual objects are time-inhomogeneous Markov-Chains, as their parameters
depend on the global state. We have adapted results from [18] to obtain al-
gorithms for this, and building on this we have obtained algorithms for checking
the global properties for a given global state, and for obtaining the time validity
set, the time interval(s) in which a global property is satisfied.

9

Mean-Field Logic
In the previous chapter we introduced a way to express and check properties
of the global mean-field model Ml via properties of a random local object.
The properties, which MF-CSL allows to describe include CSL properties of
the local model and the expected number of objects for a global model to
satisfy these. However, not only this type of properties might be of interest.
Timed properties of the global model can not be expressed using MF-CSL,
but can be beneficial for understanding the behaviour of large systems. To
accommodate this type of measure, we introduce the Mean-Field Logic (MFL)
in Section 9.1. In Section 9.2 we describe an algorithm for checking whether
a given occupancy vector m satisfies a given MFL formula. In Section 9.3 the
ways to approximate the satisfaction set of an MFL formula and the availability
of tooling are discussed. the short summary of the chapter is provided in
Section 9.4.

9.1 MFL syntax and semantics

To be able to express timed properties of the overall model, we adapt the
existing Signal Temporal Logic (STL) which was developed for monitoring
discrete temporal properties of continuous signals [74], [80]. In order to do so
we interpret the solution of the ODEs (2.1) for given initial conditions m(0) as
a signal or a trajectory of the overall mean-field modelMO. In the following we
express properties of real-valued trajectories of mean-field models m(t) using
STL-like properties. However, we first have to introduce a, so-called, mapping
of the model trajectory to the boolean signal:

Definition 9.1.1 (Global atomic property). An atomic property GAP of the
global model is a characteristic function (Boolean predicate) m → {0, 1}, from
occupancy vector m to a Boolean value. �

136 9.1 MFL syntax and semantics

Applying the concept of GAP to a given trajectory of a mean-field model m(t)
results in a Boolean function of time GAP (m(t)). In order to guarantee decid-
ability, we require that the output Boolean trajectory GAP (m(t)) has finite
variability, i.e., the number of time points, where GAP (m(t)) changes value is
finite; the output trajectory is a Boolean robust (cadlag1) function, see [74].
For simplicity, in the following we use inequalities of the form

∑
i∈N ai ·mi �	 p

as global atomic properties of mean-field models, where ai is an indicator
factor equal to 1 or 0. However, more advanced functions, satisfying the above
requirements, can be used as GAP. Give the definition of a global atomic prop-
erty, the syntax of Mean-Field Logic (MFL) can now be introduced.

Definition 9.1.2 (Syntax of MFL). Let I = [a, b], where 0 ≤ a < b, be
a non-empty bounded time interval and function GAP defining global atomic
properties. MFL formulas Υ are defined as:

Υ ::= tt | GAP | Υ1 ∧Υ2 | ¬Υ | Υ1 UI Υ2.

�

Using MFL, we can define not only a property of the global model at a given
time point, but also the evolution of the model over time, as shown in the
following example.

Example 9.1.3. We first start with the properties of the global model at a given
time point (time-independent properties). To define such a property GAPs are
combined with the time-independent operators ¬ and ∧.

The following property describes a system in which the fraction of computers
that belong to group Y and that are infected is smaller than 0.2:

Υ1 = mY,2 +mY,3 < 0.2,

where mY,2 and mY,3 denote the number of infected computers in group Y
(inactive and active respectively).

The same property can be expressed using atomic properties of the local
model as follows:

infectedY < 0.2.

1A function is cadlag if it is a function defined on the real numbers (or a subset of them)
that is everywhere right-continuous and has left limits everywhere.

Mean-Field Logic 137

The lap-based representation is not required in MFL, and is used here and
further in the thesis for the easier interpretation of the meaning of an MFL
formula.

A more involved property can be defined by the conjunction of GAPs. The
property that a system has more than 20% infected computers and less than 1%
active infected computers-members in group Z is formalized as:

Υ2 = (infected < 0.2) ∧ (activeZ < 0.01).

Note that the first part of property Υ2 includes all infected computers in all
three groups.

Timed properties of the global system are constructed by combining GAPs
(or other MFL formulas) using the until operator. The following property de-
scribes the system in which the fraction of computers which belong to group
X and are infected is smaller than 0.1 at all times until in the time interval
between 3 and 5 time units the fraction of computers that are members of group
Z and active exceeds 0.4:

Υ3 = (infectedY < 0.1) U [3,5] (activeZ > 0.4).

©
Definition 9.1.4 (Semantics of MFL). The satisfaction relation |= for MFL
state formulas and state m ∈ So is defined as:

m |= tt ∀ m ∈ So,
m |= GAP iff GAP (m) = 1,
m |= Υ1 ∧Υ2 iff m |= Υ1and m |= Υ2,
m |= ¬Υ iff m � Υ,
m |= Υ1UIΥ2 iff ∃t ∈ I : (m(t) |= Υ2) ∧ (∀t′ ∈ [0, t] m(t′) |= Υ1),

where m = m(0) at time t = 0, and m(t′) is a solution of the ODEs (2.1) at
time t = t′, with m as initial condition. �

The definition of the until formula is different from the usual representation
[83], because it requires both Υ1 and Υ2 to hold at time t, in order to guarantee
closure [74].

As was explained in the previous chapter, in this thesis we discuss mean-
field models, where the dependency on time is only implicit (via m(t)), hence,
the entire model trajectory (the solution of the ODEs (2.1)) is defined through

138 9.2 Checking an MFL property

the current system state; the time when this state is reached does not influence
the behaviour of the system. The occupancy vector for which the satisfaction
relation is checked is therefore denoted as m(0), and the time intervals in the
until formulas are relative to that. However, all the arguments and algorithms
presented further in this Chapter can be generalized to models with an explicit
time dependence.

9.2 Checking an MFL property

To check an MFL formula the parse tree has to be built and all sub-formulas
checked recursively. Therefore, the algorithms for checking each individual op-
erator have to be introduced. Checking a given occupancy vector m against
time-independent operators is straightforward, it follows directly from Defini-
tion 9.1.4. However, MFL formulas containing the Until operator can not be
checked that easily, since the behaviour of the system (trajectory) influences
the result. Therefore, we introduce the notion of the time validity set for a
given MFL formula, mean-field model and an occupancy vector, as has been
done in the previous section for MF-CSL formulas (see Definition 8.3.1).

It is easy to see that if the TVS(Υ,m, θ) contains t = 0, the formula
holds for m. The TVS of a general MFL formula is again built recursively
by finding the TVSs of sub-formulas. The computation of the TVS for the
time-independent operators is straightforward:

TVS(tt,m, θ) = [0, θ],
TVS(GAP,m, θ) = {t ∈ [0, θ] | GAP(m(t)) = 1},
TVS(¬Υ,m, θ) = [0, θ] \ TVS(Υ,m, θ),
TVS(Υ1 ∧Υ2,m, θ) = TVS(Υ1,m, θ) ∩ TVS(Υ2,m, θ).

(9.1)

Computing the TVS for the until operator (Υ1U [a,b]Υ2) (with 0 ≤ a < b) is
more challenging. The algorithm described in the following is based on the
method of monitoring temporal properties as in [74], [80]; we refer to these
papers for more details and proofs.

To compute the TVS for the until formula Υ = Υ1U [a,b]Υ2 we first find
the sets of time intervals where the sub-formulas Υ1 and Υ2 hold. Note
that both sets may contain multiple intervals, therefore we denote them as
TVS(Υ1,m, θ) = υ11 ∪ υ21 ∪ · · · ∪ υn1

1 , and TVS(Υ2,m, θ) = υ12 ∪ υ22 ∪ · · · ∪ υn2
2 ,

respectively.

Mean-Field Logic 139

To calculate TVS(Υ,m, θ) one has to obtain all time intervals where Υ =
Υ1U

[a,b]Υ2 holds. We, hence, search for time intervals where both Υ1 and
Υ2 hold, since these are the time intervals, where the validity of the until
formula can be confirmed, in case at least one such time interval lies between
a and b. Recall that the time interval in the until formula is relative to the
starting point. Therefore, to check whether a given m-vector (state of the
overall mean-field model) fulfils the until formula one has to check whether
the intersection interval can be reached within the predefined time interval
[a, b]. Hence, to directly compute the set of all time points from which the
formula can be fulfilled we shift TV S(Υ1 ∩ Υ2,m, θ) backwards, i.e., move
the left interval bound back with b and the right with a time units. This
is defined for each pair of sub-intervals in TVS(Υ1,m, θ) and TVS(Υ2,m, θ)
as so-called backwards shift, denoted as BS [a,b](υi1; υ

j
2). For each pair of the

intervals (υi1; υ
j
2), the backward shift is computed as follows:

BS [a,b](υi1; υ
j
2) = ((υi1 ∩ υj2)� [a, b]) ∩ υi1, (9.2)

where [x1, x2] � [a, b] := [x1 − b, x2 − a] ∩ [0,∞). This backward shift can be
understood as follows (from left to right):

1. The intersection (υi1 ∩ υj2) defines all time points where both Υ1 and Υ2

are valid;

2. The �-operation (or backwards shift) makes sure that: (1) the earliest
starting point is taken such that after at most b time units one can reach
a state where Υ2 holds; and that (2) the latest starting point is taken
such that from that point after, at least a time units, one can still switch
to a state in which Υ2 holds;

3. The intersection with υ1 ensures that on the way to the state where Υ2

holds, Υ1 always holds.

After the backwards shift is applied to each pair (υi1; υ
j
2), the resulting intervals

are then combined to find the TVS of the overall until formula, as follows:

TVS(Υ1U [a,b]Υ2,m, θ) =

n1⋃
i=1

n2⋃
j=1

BS [a,b](υi1; υ
j
2). (9.3)

Note that in practice only the pairs of intervals which actually do intersect have
to be considered. Using Equations (9.1-9.3), the TVS of any MFL formula can

140 9.2 Checking an MFL property

Figure 9.1: (a) TVS of ΥA
1 = (activeY ≤ 0.015) (blue solid line) and ΥA

2 =
(activeZ ≤ 0.01) (red dashed line); (b) intersection of TV S(ΥA

1 ,m(0), θ) and
TV S(ΥA

2 ,m(0), θ).

be found. After the TVS of the formula is found, we can validate whether a
formula holds for a given initial occupancy vector m by checking whether t = 0
lies in the TVS. Note that the TVS can also be seen as an independent measure
of interest, if one is looking for the time-slots where the system satisfies a given
property, for a given initial state (as in the case of MF-CSL properties). In the
following, model-checking MFL formulas is illustrated by an example.

Example 9.2.1. We again address the model of Example 7.3.1. We explain
in detail how to calculate the time validity set TVS(Υ,m(0), θ) for both (Case
A) time-independent and (Case B) time dependent formulas, given

m(0) =
1

3
({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}),

and θ = 25. Then we check whether 0 ∈ TVS(Υ,m(0), θ), which would indicate
that the initial occupancy vector m(0) satisfies the formula.

Case A. We first consider the time-independent property that describes
the system in which the fractions of active computers in groups Y and Z are
“sufficiently small”, i.e., the fraction of active infected computers in the group
Y is bounded by 0.015, and the fraction of active infected computers in the
group Z is at most 0.01, i.e., in MFL:

ΥA = (activeY ≤ 0.015) ∧ (activeZ ≤ 0.01).

To check this property the following steps are taken:

Mean-Field Logic 141

1. The trajectory of the model is obtained by solving the ODEs (7.1) given
m(0) (as depicted Figure 7.2).

2. The time validity sets of the sub-formulas ΥA
1 = (activeY ≤ 0.015) and

ΥA
2 = (activeZ ≤ 0.01) are calculated using a root finding procedure for

mY,3(t) = 0.015 and mZ,3(t) = 0.01.

We find
TV S(ΥA

1 ,m(0), θ) = [6.79; 21.69]

and
TV S(ΥA

2 ,m(0), θ) = [15.14, 25]

(see Figure 9.1(a)).

3. The time validity set of the whole formula then consist of all intervals
where both sub-formulas hold, i.e., we have

TVS(ΥA,m(0), θ) = [15.14; 21.69]

(see Figure 9.1(b)).

4. The validity of the formula for a given initial vector is checked by veri-
fying whether t = 0 lies in TVS(ΥA,m(0), θ). It is easy to see that
0 	∈ [15.14, 21.69], therefore, m(0) 	|= ΥA.

Case B.We now consider a time-dependent property of the global model, which
describes that the fraction of active infected computers in all three groups to-
gether (denoted as active) remains smaller or equal to 0.05 until within 3 time
units the fraction of all not infected computers becomes less or equal to 0.6.
This property ensures that the virus is “quiet enough” and will not be detected
until a sufficient number of computers in the system is infected. In MFL we
have:

ΥB = (active ≤ 0.05) U [0,3] (not infected ≤ 0.6).

We first find the time validity sets for this formula, then we check whether the
initial occupancy vector m(0) satisfies this property:

142 9.2 Checking an MFL property

Figure 9.2: (a) TVS of ΥB
1 = active ≤ 0.05 (red dashed line) and ΥB

2 =
(not infected ≤ 0.6) (blue solid line); (b) intersection of TV S(ΥB

1 ,m(0), θ) and
TV S(ΥB

2 ,m(0), θ); (c) TVS of ΥB = (active ≤ 0.05)U [0,3](not infected ≤ 0.6).

1. The time validity sets of the sub-formulas ΥB
1 = (active ≤ 0.05) and

ΥB
2 = (not infected ≤ 0.6) are calculated using a root finding procedure

for

mX,3 +mY,3 +mZ,3 = 0.05 and mX,1 +mY,1 +mZ,1 = 0.6.

We find
TV S(ΥB

1 ,m(0), θ) = [0; 3.64]

and
TV S(ΥB

2 ,m(0), θ) = [2.5, 25]

(see Figure 9.2(a)).

2. Then the intersection of TV S(ΥB
1 ,m(0), θ) and TV S(ΥB

2 ,m(0), θ) is
found, that is an interval [2.5; 3.64] (Figure 9.2(b)).

3. To find TVS(ΥB,m(0), θ) the backwards shift is done as in Equation (9.3)
TVS(ΥB,m(0), θ) = [2.5−3; 3.64−0]∩TV S(ΥB

1 ,m(0), θ) = [0; 3.64] (see
Figure 9.2(c)). Note that the behaviour of the system in the past (before
time t = 0) is not relevant, therefore, the lower bound of the TVS is set
to zero.

4. Formula ΥB =
(
(active ≤ 0.05) U [0,3] (not infected ≤ 0.6)

)
holds form(0),

since 0 ∈ TVS(ΥB,m(0), θ).

Mean-Field Logic 143

Wolfram Mathematica [103] was used for calculating the above results. We
compared them with results obtained with the Breach toolbox [32], which has
been built for checking STL properties, and they coincide. Note that the Breach
toolbox is publicly available and can be used for checking MFL-like properties
of mean-field models.

©

9.3 Satisfaction set of an MFL formula

In this section we discuss how to compute the complete satisfaction set of an
MFL formula, which is formally defined as follows:

Definition 9.3.1 (MFL Satisfaction Set). Given an MFL formula Υ and a
mean-field model MO, the satisfaction set of an MFL formula consists of
all occupancy vectors m that satisfy Υ:

Sat(Υ) = {m | m |= Υ}.

�

The mean-field model has an infinite state-space, therefore, the computation
of the satisfaction set is not straight-forward. The ultimate goal is to partition
the state-space of the model SO into two parts: (i) states, satisfying a given
formula, i.e., Sat(Υ); (ii) states, which do no satisfy Υ. Since exact methods for
computing the satisfaction set of an MFL formula are not available, numerical
(approximate) algorithms will be discussed in the following. The latter means
that in some cases the partitioning of the state-space into two sets might not
be available, hence, a third set, namely, the set of uncertain states, might be
necessary. In such cases this third set should be as small as possible. The
satisfaction set of a given formula is constructed recursively, by building and
combining the satisfaction sets of sub-formulas.

9.3.1 Time-independent operators

The computation of satisfaction sets for operators which are not time depend-
ent, is straight-forward and does not imply any additional computations. It

144 9.3 Satisfaction set of an MFL formula

follows directly from Definition 9.1.4 and is formalized as follows:

Sat(tt) = So,
Sat(GAP) = {m | GAP (m) = 1},
Sat(Υ1 ∧Υ2) = Sat(Υ1) ∩ Sat(Υ2),
Sat(¬Υ) = So \ Sat(Υ).

9.3.2 The until operator

The computation of the satisfaction set of the time-dependent until operator
Υ1U [a,b]Υ2 is not trivial and involves additional methods. In the following we
discuss three ways that can be used to calculate this set. Two of these are
directly applicable to the whole MFL formula, and one is only suitable for
a single until operator, hence, the satisfaction sets of the time-independent
sub-formulas have to be computed separately (see Section 9.3.1).

9.3.2.1 Discretization of the state-space

One of the ways to approximate the satisfaction set of an MFL formula is
to discretize the continuous state-space and check the MFL formula for each
point of the obtained discrete states-space, using the standard method (see
Section 9.2). The discretization can be done, for example, by a grid-based
approach. However, this approach is computationally intensive and produces
only an approximation of the satisfaction set. Moreover, the quality of such an
approximation and the computational demand depend directly on the fineness
of the grid. In addition, the complexity of the problem grows with the number
of dimensions (local states). Although the method is applicable for any MFL
formula, applying it to a model with a large local state-space and in order to
obtain high-quality approximations is simply not feasible.

The Breach toolbox [32] can be used for estimating what parts of the state
space would likely be included to the satisfaction set using the algorithms as
presented in Section 9.2, and parameter sampling procedure. Grid sampling
(for smaller models) or quasi-random sampling (for bigger models) is used for
choosing a sufficient number of points of the state space, then for each of these
sampled points it is easy to check whether a given MFL formula holds or not.
Given a fine enough number of such points qualitative, but not quantitative,
characterization of the satisfaction set can be obtained.

Mean-Field Logic 145

Example 9.3.2. The state-space of the running example in this part of the
thesis is ten-dimensional, which makes the graphical representation of the sat-
isfaction set difficult. Moreover, obtaining a fine-enough sampling of the ten-
dimensional state-space is very computationally demanding. Therefore, we il-
lustrate the application of the Breach toolbox to the simpler virus spread model,
as in Example 2.2.2, or as in one of the groups Y or Z if they are cut off the
overall network, become independent of the other two groups, and are analysed
separately. Recall, that this model has a three-dimensional state-space, where
the local states are labelled as not infected, infective and inactive, and infected
and active. We set the parameters of the model as

k1 = 0.9, k2 = 0.005, k3 = 0.01, k4 = 0.1, k5 = 0.06,

where k1 is an infection rate, k2 is the recovery rate for the inactive infected
machine, k3 and k3 are the rates for the infected machine to become active
and return to inactive state, respectively; and k5 is the recovery rate for an
active infected machine. The initial occupancy vector is as follows: m(0) =
(0.9; 0.0; 0.1).

We perform a quasi random sampling of 10 000 states from the state space,
and calculate the trajectories of the model for each of these states. Note that
additional constraints on the sampled states have to be added to guarantee that
m1 +m2 +m3 = 1. The MFL formula

Υ = (not infected > 0.5) U [0,2] (inactive > 0.3)

is checked for each of the chosen states. Figure 9.3 provides the results of the
procedure, where the states which satisfy Υ are marked blue, and the states that
do not satisfy Υ are depicted in red. As one can see, the formula holds in the
area, where the fractions of not infected, inactive and active machines satisfy
the following inequalities:

0.4 < m1 < 0.6, 0.2 < m2 < 0.4, 0 < m3 < 0.3.

The above results are not exact, and more precise algorithms are needed in
order to approximate the satisfaction set of a given MFL formula. Moreover,
since the sampling is done randomly some areas of the state-space can possibly
be covered less than another (see bottom part of Figure 9.3), which can also be
avoided when using other techniques.

©

146 9.3 Satisfaction set of an MFL formula

Figure 9.3: The regions where MFL formula holds obtained directly from
Breach toolbox.

Even though this method does not provide any guarantees, it can be used
as a “quick check” to find the regions where more precise procedures have to
be applied to obtain the desired results. For instance, when calculating the
satisfaction set of the formula, discussed in Example 9.3.2, only the part of
the state space, which includes blue coloured states needs to be checked using
more fine discretization and algorithms presented in Section 9.2 to check an
MFL formula for each of the chosen initial states. Moreover, when the “regions
of interest” are found using the Breach Toolbox, one of the methods presented
in the following can be applied to approximate the satisfaction set of an MFL
formula.

9.3.2.2 Solving two reachability problems

Another way to numerically develop the satisfaction set of a given until for-
mula would be to divide the formula Υ1U [a,b]Υ2 into two reachability problems,
similar to standard methods, as, e.g., in [6]. The reachability problems for

Mean-Field Logic 147

mean-field models can be solved using techniques proposed in [33]. Their
method partitions the set of all parameters of the ODE-based model into three
sets, namely (i) Sgoal, which comprises all states that satisfy the reachability
problem; (ii) Sbad, including all states which do not satisfy it; and (iii) Sunc,
which combines all states for which reachability can not be indicated. Instead
of partitioning the parameter set we use the proposed methods for partitioning
the state-space of the mean-field model. Note, however, that this approach is
only applicable for a single until operator. To compute the satisfaction set
of an until formula we need to solve the two reachability problems in reverse
order. We first find all states from which we can reach a Υ2 state in at most
(b− a) time units, while visiting only Υ1 states. We denote the set of all these
states S′

goal. We then find the set of all states (denoted as Sgoal), from which
we can reach S′

goal, while visiting only Υ1 states. The satisfaction set of the
overall until formula then equals Sgoal.

The general approach of the method, as in [33] is as follows. The reachable
set is found using sensitivity analysis and the satisfaction set is obtained by
using parameter synthesis algorithm based on a refining partition. That is to
iteratively refine the state-space of the mean-field model, and assign the ob-
tained subsets to one of the three sets, namely Sgoal, Sbad, or Sunc by checking
the reachability problem for this set. Each refinement introduces only subsets
that are strictly smaller than the refined set to guarantee that the process ends.
The algorithm is designed to stop when the uncertain set is either empty, or
smaller than a predefined size.

To implement this algorithms the Breach Toolbox [32] in [33], however,
a tool for the automated solution of the reachability problem is not publicly
available. Although the numerical algorithms in [33] can not provide formal
guarantees on the correctness of the results, asymptotic guarantees exist, there-
fore, results can always be improved by decreasing the tolerance factor in the
numerical computations.

9.3.2.3 Robustness based method

In the following we discuss another method to obtain the satisfaction set of an
arbitrary MFL formula (including nested until operators). The state-space par-
titioning is again based on refining partition algorithms, however, this approach
requires introducing a quantitative semantics of MFL. This allows both boolean
and real values as an output of a model-checking algorithm (R∪{�,⊥}). The

148 9.3 Satisfaction set of an MFL formula

result of the model-checking procedure shows that a given occupancy vector
satisfies an MFL formula (in case the obtained value is greater then zero),
in addition it estimates the robustness of satisfaction. In the following we
introduce the quantitative semantics of MFL, similarly to [35], where a quant-
itative semantics was introduced for STL. For simplicity of notation we use
global atomic properties in the form f(m1,m2 . . .mK) ≥ c, where c ∈ R.

Definition 9.3.3 (Quantitative semantics). Given an MFL formula Υ, a
mean-field modelM, and initial occupancy vectorm, the quantitative semantics
for space robustness ρ(Υ,m) is defined as follows:

−� = ⊥,
ρ(tt,m, t) = �,
ρ(GAP,m) = f(m1,m2 . . .mK)− c,
ρ(Υ1 ∧Υ2,m) = min(ρ(Υ1,m), ρ(Υ2,m)),
ρ(¬Υ,m) = −ρ(Υ,m),

ρ(Υ1UIΥ2,m) = supt′∈t+I min
(
ρ(Υ2,m(t′)),

inft′′∈[t,t′] ρ(Υ1,m(t′′))
)
,

where m = m(0), and m(t′) is a solution of the ODEs (2.1) at time t = t′ with
m as initial condition, � and ⊥ are ordered such as � = ∞ and ⊥= −∞. �

Time and a space-time robustness of satisfaction for a quantitative semantics
is discussed in [35] and ρ(Υ,m) is called a robustness estimate. The robustness
estimate is found using an inductive procedure as for model-checking MFL for-
mulas. Efficient algorithms for finding robust estimates are described in [34],
and the Breach toolbox [32] can be directly used for that purpose. Given
the algorithms for finding the robust satisfaction of an MFL formula, the sat-
isfaction set of such formula, Sat(Υ), can be calculated by partitioning the
state-space SO of the mean-field model. The latter can be done using refining
partition, as proposed in [33, 35].

It is also possible to perform the robustness analysis using tools like S-
TaLiRo [2] and BIOCHAM [24]. Note that also here no formal guarantees on
the correctness of results can be provided. The advantage of the robustness-
based method lies in the fact that the procedure is applicable to any MFL
formula (unlike reachability-based methods). Moreover, there are tools avail-
able for robustness analysis of the time-series (numerical solutions of the ODEs,
or even measured data in the context of satisfaction set development). Finally,

Mean-Field Logic 149

more advanced numerical methods might be applied for the partitioning of the
state-space.

9.4 Summary

In this chapter we introduced the logic MFL for checking timed propertied
of overall mean-field models. We defined the global atomic properties of the
overall mean-field model to be able to reason on the global level directly, in
contrast with using the logic MF-CSL presented in the previous chapter.

The algorithms for checking MFL properties against a given occupancy
vector and finding the time validity set have been presented and illustrated
by the examples. All computations were done in Wolfram Mathematica and
compared against results produced by the Breach Toolbox. Both results were
consistent. Moreover, three possible ways to estimate the satisfaction set of an
MFL formula have been discussed.

10

Relation between MFL and
MF-CSL

As we discussed in the previous chapters, there are two ways of describing
properties of the mean-field models. One way is to reason about the fraction
of objects satisfying a given local property (check, whether this number meets
a given threshold) using the logic MF-CSL. Another way is describing the
properties of the overall system, including timed properties, which can be done
with the logic MFL. In Section 10.1 we discuss the difference between these
two logics and argue that both have their value. The possibility of combining
both logics is discussed in Section 10.2. Section 10.3 provides the concluding
remarks for the material presented in Part III.

10.1 Comparison of MFL and MF-CSL

In Table 10.1 the main differences between MFL and MF-CSL are depicted. As
we previously discussed both logics are used in order to describe (and check)
properties of mean-field models. Moreover, the time validity set can be defined
for MF-CSL, while model-checking MFL properties require the computation
of TVSs.

All properties in MF-CSL are based on the structure and labelling of the
local model, and expectation operators lift these properties to the global level.
Conversely MFL expresses properties of the global mean-field model independ-
ently from the labelling and structure of the local model. A global atomic prop-
erty (GAP) can be defined both on the local model structure and labelling, as
well as via labelling-independent functions of the occupancy vector m. For ex-
ample, such properties as “infected computer in all three groups” can be easily
described by MFL, while MF-CSL needs “workarounds” by either introducing

152 10.1 Comparison of MFL and MF-CSL

Property MF-CSL MFL
Applicable for mean-field models + +
Operates on both local and global levels + −
Timed property on the local level + −
Timed property on the global level − +
Local labelling (lap) + −
Global labelling (GAP) − +
Expectation relations + −
Time Validity Set + +
Satisfaction set can be approximated −/+ +

Table 10.1: MF-CSL versus MFL

different labelling on the local level, or expressing the infected properties for
each group separately on the local level, then on the global level; and finally
combining these properties by concatenation and/or negation.

The largest difference lies in the application of timed properties (see Fig-
ure 10.1). Both logics may use the until operator, however, in MFL the until
operator is used on the global level, while in MF-CSL only the evolution of an
individual random object can be described with the until operator.

Finally, approximating the full satisfaction set is possible for MFL proper-
ties, as defined in Section 9.3. The calculations on the local level of MF-CSL
are, however, quite demanding [18] and the partitioning of the state-space of
the overall mean-field model, as, e.g., discussed in Section 9.3 is impractical.
Therefore, the satisfaction set of the MF-CSL formulas is often impossible to
obtain.

For some models, e.g., models of a chemical reactions [45], the behaviour
of a random individual (one molecule) is not of interest. Therefore, MF-CSL
might not be of interest and only the logic MFL would be applicable. Des-
pite that, there are many systems, that can be modelled using the mean-field
method, where the behaviour of a random object would be of importance, for
example in the virus spread models, as is discussed in this thesis.

Clearly, both logics can be of interest, albeit for different users and differ-
ent systems. Some properties can be expressed in both logics, however, the
majority of properties can only be described in one of the two logics, which
explains the necessity of introducing these logics separately.

Relation between MFL and MF-CSL 153

Figure 10.1: MFL property vs MF-CSL property.

10.2 Combination of the two logics

We now discuss the combination of the two logics to achieve the best expressiv-
ity. As described in Section 9.1, a Global Atomic Property can be defined
by any boolean function, which, when applied to the model trajectory, has
as output a robust cadlag function (everywhere right-continuous and has left
limits everywhere). Moreover, an arbitrary MF-CSL formula Ψ can be seen
as a boolean function m → {0, 1}, where the output signal equals 1 for all
t ∈ TV S(Ψ,m, θ), and 0 otherwise. Therefore, if this output signal is cadlag,
the MF-CSL property Ψ can be used to define a GAP of the overall mean-field
model. This allows to define combined properties, where both MF-CSL and
MFL operators are used. Such combined properties are easier to interpret,
since the GAPs of the MFL formulas are defined via the local atomic proper-
ties, moreover, using such combined formulas allows, for example, to describe
timed properties on both levels. Let us consider the following example:

Υ = (E≤0.1activeY)︸ ︷︷ ︸
MF-CSL sub-formula

U [0,5]︸ ︷︷ ︸
MFL until

(
EP≤0.1(tt U

[0,3] infectedY)
)

︸ ︷︷ ︸
MF-CSL sub-formula

This property is useful for a system administrator, who wants to be sure that

154 10.2 Combination of the two logics

Figure 10.2: (a) TVS of Υ1 (red dashed line) and Υ2 (blue solid line); (b) TVS
of Υ.

with the current activity of the anti-malware software:

(MF-CSL) not more than 10% of the computers in group Y are infected
and active,

(MFL) until within 5 time units a system state is reached,

(MF-CSL) where the probability that a random computer will become
infected within 3 time units is less or equal than 0.1

The example below provides a more detailed explanation on how to check such
properties.

Example 10.2.1. In the following we define and check a combined property
of the computer virus model, as given in Example 7.3.1. We will construct
a combined property using both logics. Then we find the time validity set for
the obtained property given a predefined time interval θ = [0, 15], and initial
distribution

m(0) =
1

3
({0.8, 0, 0, 0.2}, {0.9, 0, 0.1}, {0.4, 0.55, 0.05}).

Finally, we check the combined property against the initial occupancy vector
m(0). For simplicity we use the MF-CSL property, described in Example 8.3.2
as one of the sub-formulas in the combined property:

Υ1 = EP≤0.2(not infectedY U [0,3] infectedY).

Relation between MFL and MF-CSL 155

We combine Υ1 with MFL sub-formula Υ2 = (active ≥ 0.1) using the until
operator and obtain the following combined formula:

Υ =
(
EP≤0.2(not infectedY U [0,3] infectedY)

)
︸ ︷︷ ︸

MF-CSL sub-formula

U [1,2]︸ ︷︷ ︸
MFL until

(active ≥ 0.1)︸ ︷︷ ︸
MFL GAP

.

This property describes a system, where the expected probability of a random
computer to be from group Y and to become infected within 3 time units is less
than or equal to 0.2 (MF-CSL), at all times until within time interval [1, 2]
(MFL) the number of active infected computers in all three groups is less or
equal than 0.1 (MFL).

To check such a combined property we first have to find the TVSs of all
sub-formulas. From Example 8.3.2 we recall that

TVS(Υ1,m, θ) = [0, 7.45].

The time validity set of the MFL sub-formula TVS(Υ2,m, θ) is found by solving
mX,3 +mY,3 +mZ,3 = 0.1:

TVS(Υ2,m, θ) = [3.61; 15].

Figure 10.2(a) displays the time validity sets of sub-formulas Υ1 and Υ2.
The time validity set of the combined formula is computed as described

in Section 9.2: first the intersection of TVS(Υ1,m, θ) and TVS(Υ2,m, θ) is
found:

TVS(Υ1 ∩Υ2,m, θ) = [3.61; 7.45].

Then TVS(Υ1 ∩Υ2,m, θ) is shifted backwards, as depicted in Figure 10.2(b):

TVS(Υ,m, θ) = [3.61− 2; 7.85− 1] ∩ TVS(Υ1,m, θ) = [1.61; 6.45].

As one can see, the occupancy vector m does not satisfy the combined property
Υ, since 0 	∈ [1.61; 6.45].

©

Full computation of the satisfaction set of such combined properties might
be not feasible, due to the high computational costs on the local level of MF-
CSL [18].

156 10.3 Concluding remarks

10.3 Concluding remarks

With this section we provide concluding remarkc for Part III. In this part of
the thesis two logics for checking mean-field models have been proposed. The
logic MF-CSL [66] uses local CSL properties as a basis for global expectation
operators, therefore, it is fully dependent on the structure of the local model.
The logic MFL, on the other hand, does not take into account properties of
the individual objects and only reasons on the global level. Therefore, time-
dependent properties of the global model can be described using MFL, whereas
MF-CSL only allows time-dependent properties on the local level.

The algorithms for checking a given formula against an initial occupancy
vector and for finding time validity sets were discussed for both logics. For
model-checking MF-CSL properties first the local property has to be checked
(similar to [18]). The satisfaction set (path probability) of the local model is
either built for a given moment in time or the time-dependent satisfaction set
(path probability) is found. Then the local satisfaction set is used on the global
level for checking MF-CSL formula or building time validity sets. Examples
were discussed to illustrate the presented algorithms.

The algorithms for checking MFL properties against a given occupancy
vector and finding the time validity set are based on the method of monitoring
temporal properties as in [74], [80]. We adapt these methods for checking global
properties of the mean-field model, and illustrate the algorithms in examples.
All computations were done in Wolfram Mathematica and compared against
results, produced by the Breach Toolbox. Both results were consistent

Moreover, three possible ways to calculate the satisfaction set of an MFL
formula are discussed. One of these methods relies on the presented boolean
semantics of MFL and a discretization of the continuous state-space. The
second method makes use of an existing technique for finding the parameters
of the model, which satisfy a given reachability problem [33] using sensitivity
analysis. The until formula is solved as a combination of two reachability prob-
lems, which are tackled in reverse order to be able to check whether the until
formula holds. The refine partitioning method is used to partition the states
space and find the satisfaction set. The third method adapts an existing notion
of robustness [35] of a temporal logic and sensitivity analysis. This technique
is based on defining a quantitative semantics of MFL, then the resulting robust
estimate is used as an indicator in order to guide the partitioning algorithm.

Furthermore, the expressivity and applicability of the two logics have been

Relation between MFL and MF-CSL 157

compared. Despite the fact that both logics are applicable to mean-field mod-
els, clearly, both are of interest and can not be fully replaced by the other.
Another interesting insight in the usage of the presented logics lies in the fact
that the two logics can be combined if the global atomic property of the mean-
field model is represented by one of the expectation operators. This allows
the combination of MF-CSL and MFL properties (including timed properties)
on both levels. Such properties can be easily checked for a given occupancy
vector, however, the satisfaction set development might not be feasible.

11

Conclusions
In this chapter we summarize the thesis; we first recall the research question
stated in Chapter 1 and list the findings of the thesis, addressing each of these
questions. Then we discuss the contribution of this thesis and directions for
future work.

Q1: Can mean-field method be used for fast, efficient, and
accurate analysis of large systems of interacting objects?

In Chapter 3 we showed that the mean-field method is much faster than sim-
ulation. Moreover, the approximated results are quite accurate, and lie inside
the 95% confidence intervals, as obtained by simulation. In addition we have
been able to explore the gain in speed (see Table 3.3), which is achieved by
applying the mean-field method. We addressed various questions which can-
not practically be answered with simulation, such as questions involving cost
trade-offs; this is useful in typical engineering applications. One can think of
other questions to address, however, our aim was to show the potential of the
method by addressing problems which can not be solved using simulation.

Q2: How to obtain realistic parameter values for
mean-field models?

To address this research question we performed a case-study based on a real-
world networking phenomenon in Part II. We combined the mean-field ap-
proach with parameter-fitting techniques, namely, minimizing relative squared
error and negative log-likelihood, to obtain a parametrized mean-field model
of the spreading phase of the Code-Red worm. We were able to show that
the data measured during the outbreak of the worm in 2001 can be used to
parametrize the model, such that it closely reflects the behaviour of the worm.

160

The models we fitted allowed us to obtain parameters which ensure a relat-
ive squared error of 0.2% and 0.7% between the model prediction and the
measurement, for the July and August outbreaks, respectively. Last, but not
least, we provided a full discussion on the challenges one may encounter when
performing similar studies.

Q3: How to express and automatically check advanced
properties of mean-field models?

In Part III of this thesis we proposed two logics for model-checking mean-field
models, namely, MF-CSL and MFL. We defined the syntax and semantics
of both, and provided detailed model-checking algorithms. The logic MF-CSL
uses local CSL properties as a basis for global expectation operators, therefore,
it is fully dependent on the structure of the local model. The logic MFL, on
the other hand, does not take into account properties of the individual objects
and only reasons on the global level. Therefore, time-dependent properties of
the global model can be described using MFL, whereas MF-CSL only allows
time-dependent properties on the local level. We compared these two logics,
and provided a discussion on the possible combination of both. We argue that
even though both logics are defined for mean-field models, clearly, both are of
interest and can not be fully replaced by the other.

Lessons learned

Let us first come back to the Stuxnet example discussed in Chapter 1. We first
tried to find out whether quantitative analysis of Stuxnet is possible in 2011
in [64]. Looking back at it after 3 years of experience in the field we can better
judge what research questions can be answered for this concrete example, and
why some of these can only be addressed partially. A full parametrization of
the Stuxnet model is still not possible. There are couple of reasons for it:

• There is no data available. Indeed, Stuxnet is very different from Code-
Red, as discussed in Part II. It was programmed to spread slowly and
imperceptibly, therefore, it was operating for more then a year without
being discovered, and measured.

• Human influence. As we learned from the Code-Red case-study, proper
modelling of human behaviour is a very difficult task. Although some,

Conclusions 161

e.g., sociological study can help to estimate the parameters describing
human influence, it is very difficult to do, and the results might still be
unrealistic.

• Command-and-control. The influence of C&C is difficult to model since it
includes both carefully planned, and unpredictable “on-the-spot” human
actions.

If one would want to do quantitative analysis of Stuxnet now, the mean-field
model would clearly be possible to obtain, however, the parameter values are
still not available. A partial parametrization might be possible, but very dif-
ficult to obtain. It will require close collaboration with security experts to
obtain experimental data. When fitting the parameters, data measured in a
synthetic environment has to be treated differently, than the real data. Al-
though some of the difficulties might be avoided, e.g., setting initial conditions
or dealing with measurements that do not relate to the model; the influence of
the experimental environment has to be carefully considered. Model-checking
of the partially parametrized model might, however, help to better understand
the behaviour of Stuxnet.

Next to the application and case-study this thesis presents two new logics
and model-checking algorithms for mean-field models. Defining the syntax
and semantics of the two logics required us to look deep into the structure of
the mean-field model and properties of interest. Moreover, the techniques for
model-checking ICTMCs [18] had to be studied and adopted to be used as a
part of the MF-CSL model-checking algorithms. The notion of time validity
sets for a given formula was introduced in order to stress the dependency of the
model-checking results on time. Moreover, global atomic properties have been
defined, to be able to express the properties of the overall model by MFL.
The logic MFL is closely related to STL [74], therefore, the techniques for
checking temporal properties of the continuous signals had to be studied and
applied to mean-field models. Model-checking mean-field models closely relates
to the field of model-checking infinite-state models, since the state-space of the
mean-field model is infinitely large as well. Recently a number of studies were
performed in this field, either addressing models with a highly structured state-
space [85], or applying abstractions [85], and [55]. The convergence theorem
allows to apply an abstraction of the underlying state-space that only considers
the deterministic behaviour of a very large population. This, in turn, makes

162

model-checking of such large-scale models feasible.

Overall this thesis presents an interesting combination of applied case-
studies and theoretical techniques, which has led to very practical and relevant
insights. In our point of view the field of computer science would benefit from
more collaboration between experts from different fields. Such a collaboration
will lead to a better understanding of which kind of measurements are neces-
sary to build reliable models and to obtain accurate results. This, in turn,
could result in a better understanding of the studied phenomenon.

Future directions

For each part of the thesis there remain open research topics, which, however,
lie outside the scope of this thesis. In the following we will mention a couple
of them.

Even though there is an increasing body of work that deals with relaxing
the conditions of the convergence theorem, e.g., [91], [50], [52], it would be
very interesting to see whether it can be applied to other kinds of model, for
example, such including non-determinism.

To the best of our knowledge it would be difficult to circumvent the en-
countered problems with respect to the parameter fitting, due to the partial
availability of data and the lack of initial conditions. Even though special para-
meter fitting method exists that do not require initial conditions, e.g., [84], they
are not able to cover the main problem of the partial availability of data.

Model-checking mean-field models is a very young field, and many ways
of exploring this field have not yet been taken. The directions of interest
include providing formal guarantees for obtained results, and exploring the
unbounded properties of the local and global models. These extensions are not
easy to achieve since there are many different types of models and properties
to be considered, however, they are important for the practical usage of the
proposed theoretical findings. Moreover, in this thesis we focused on model-
checking continuous-time models, while some of the application, e.g., gossiping
protocols, may benefit from developing algorithms for discrete-time models.

Bibliography
[1] Aldrich, J. Doing Least Squares: Perspectives from Gauss and Yule.

International Statistical Review, 66(1):61–81, 1998.

[2] Annpureddy, Y., Liu, C,. Fainekos, G., and Sankaranarayanan, S. S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems. In
TACAS, volume 6605 of LNCS, pages 254–257. Springer, 2011.

[3] Arlitt, M., and Jin, T. A Workload Characterization Study of the 1998
World Cup Web Site. Network Magazine of Global Internetwkg, 14(3):
30–37, 2000.

[4] Baccelli, F., Karpelevich, F.I., Kelbert, M.Y., Puhalskii, A.A., Rybko,
A.N., and Suhov, Y.M. A mean-field limit for a class of queueing net-
works. Journal of Statistical Physics, 66:803–825, 1992.

[5] Baier, C. and Katoen, J.P. Principles of model checking. MIT Press,
2008.

[6] Baier, C., Haverkort, B.R., Hermanns, H., and Katoen, J.P. Model-
checking algorithms for continuous-time Markov chains. IEEE Transac-
tions on Software Engineering, 29(7):524–541, 2003.

[7] Bakhshi, R. and Cloth, L. and Fokkink, W. and Haverkort, B.R. Mean-
Field Analysis for the Evaluation of Gossip Protocols. In QEST, pages
247–256. IEEE Computer Society, 2009.

[8] Bakhshi, R. and Endrullis, J. and Endrullis, S. and Fokkink, W. and
Haverkort, B.R. Automating the mean-field method for large dynamic
gossip networks. In QEST, pages 241–250. IEEE Computer Society, 2010.

164 BIBLIOGRAPHY

[9] Bartocci, E., Bortolussi, L., Nenzi, L., and Sanguinetti, G. On the ro-
bustness of temporal properties for stochastic models. In HSB, volume
125 of EPTCS, pages 3–19. Open Publishing Association, 2013.

[10] Bellman, R., and Roth, S.R. The use of splines with unknown end points
in the identification of systems. Journal of Mathematical Analysis and
Applications, 34(1):26 – 33, 1971.

[11] Benäım, M. and Le Boudec, J.Y. A class of mean field interaction models
for computer and communication systems. Performance Evaluation, 65
(11-12):823–838, 2008.

[12] Berghel, H. The Code Red Worm. Communications of the ACM, 44(12):
15–19, 2001.

[13] BeyondTrust, Inc. eEye Digital Security. http://www.eEye.com.

[14] Billingsley, P. Probability and Measure. Wiley-Interscience, 3rd edition,
1995.

[15] Bobbio, A. and Gribaudo, M. and Telek, M. Analysis of Large Scale
Interacting Systems by Mean Field Method. In QEST, pages 215–224.
IEEE Computer Society, 2008.

[16] Bortolussi, L. Hybrid Limits of Continuous Time Markov Chains. In
QEST, pages 3–12. IEEE Computer Society, 2011.

[17] Bortolussi, L., and Hayden, R.A. Bounds on the deviation of discrete-
time Markov chains from their mean-field model. Performance Evalu-
ation, pages 736–749, 2013.

[18] Bortolussi, L. and Hillston, J. Fluid Model Checking. In CONCUR,
volume 7454 of LNCS, pages 333–347. Springer, 2012.

[19] Bortolussi, L. and Hillston, J. Checking Individual Agent Behaviours in
Markov Population Models by Fluid Approximation. In SFM, volume
7938 of LNCS, page 113–149. Springer, 2013.

[20] Bortolussi, L. and Hillston, J. and Latella, D. and Massink, M. Continu-
ous approximation of collective systems behaviour: A tutorial. Perform-
ance Evaluation, 70(5):317 – 349, 2013.

BIBLIOGRAPHY 165

[21] Bortolussi, L. and Lanciani, R. Model Checking Markov Population
Models by Central Limit Approximation. In QEST, volume 8054 of
LNCS, pages 123–138. Springer, 2013.

[22] Bradley T.J., Gilmore, S.T., and Hillston, J. Analysing distributed inter-
net worm attacks using continuous state-space approximation of process
algebra models. Journal of Computer and System Sciences, 74(6):1013 –
1032, 2008.

[23] Calder, M. and Gilmore, S. and Hillston, J. Automatically deriving
ODEs from process algebra models of signalling pathways. In CMSB,
pages 204–215, 2005.

[24] Calzone, L., Fages, F., and Soliman, S. Biocham: An environment for
modeling biological systems and formalizing experimental knowledge.
Bioinformatics, 22(14):1805–1807, 2006.

[25] Cerotti, D. and Gribaudo, M. and Bobbio, A. Disaster Propagation
in Heterogeneous Media via Markovian Agents. Critical Information
Infrastructure Security, 5508:328–335, 2009.

[26] Chaintreau, A., Le Boudec, J.Y., and Ristanovic, N. The age of gossip:
spatial mean field regime. In SIGMETRICS/Performance, pages 109–
120. ACM, 2009.

[27] Han T. Katoen J.P. Chen, T. and A. Mereacre. LTL Model Checking of
Time-Inhomogeneous Markov Chains. In ATVA, volume 5799 of LNCS,
pages 104–119. Springer, 2009.

[28] Ciocchetta, F. and Hillston, J. Bio-PEPA for epidemiological models.
Electronic Notes in Theoretical Computer Science, 261:43–69, 2010.

[29] Darling, R.W.R. Fluid Limits of Pure Jump Markov Processes: a Prac-
tical Guide. ArXiv Mathematics e-prints, 2002.

[30] Darling, R.W.R. and Norris, J.R. Differential equation approximations
for Markov chains. Probability Surveys, 5:37–79, 2008.

[31] Deavours, D.D. and Clark, G. and Courtney, T. and Daly, D. and De-
risavi, S. and Doyle, J.M. and Sanders, W.H. and Webster, P.G. The
Möbius framework and its implementation. IEEE Transactions on Soft-
ware Engineering, 28(10):956–969, 2002.

166 BIBLIOGRAPHY

[32] Donzé, A. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In CAV, volume 6174 of LNCS, pages 167–170. Springer,
2010.

[33] Donzé, A. and Clermont, G. and Legay, A. and Langmead, C.J. Para-
meter synthesis in nonlinear dynamical systems: Application to systems
biology. Journal of Computational Biology, 17(3):325–336, 2010.

[34] Donzé, A. and Ferrère, T. and Maler, O. Efficient robust monitoring for
STL. In CAV, volume 8044 of LNCS, pages 264–279. Springer, 2013.

[35] Donzé, A. and Maler, O. Robust satisfaction of temporal logic over
real-valued signals. In FORMATS, volume 6246 of LNCS, pages 92–106.
Springer, 2010.

[36] eEye Digital Security. Advisories and Alerts: AD20010618.
https://web.archive.org/web/20010805211728/http://www.eeye.

com/html/Research/Advisories/AD20010618.html, 2001.

[37] Eichmann, K. Handlers Diary Blog. https://isc.sans.edu/diary/

diary.php.

[38] Ekstrom, M. Consistency of generalized maximum spacing estimates.
Scandinavian Journal of Statistics, 28(2):343–354, 2001.

[39] Fainekos, G.E., and Pappas, G.J. Robustness of temporal logic specific-
ations for continuous-time signals. Theoretical Computer Science, 410
(42):4262 – 4291, 2009.

[40] Falliere, N.,Murchu, L.O., and Chien, E. W32.Stuxnet Dossier.
http://www.symantec.com/content/en/us/enterprise/media/

security_response/whitepapers/w32_stuxnet_dossier.pdf, 2010.

[41] Fisher, D. What is a Botnet? Kaspersky lab daily| Kaspersky
lab official blog. http://reference.wolfram.com/mathematica/guide/
Optimization.html, 2013.

[42] Garetto, M. and Gong, W. and Towsley, D. Modeling malware spreading
dynamics. In INFOCOM, pages 1869–1879. IEEE Computer Society,
2003.

BIBLIOGRAPHY 167

[43] Gast, N., and Gaujal, B. A Mean Field Model of Work Stealing in
Large-scale Systems. In ACM SIGMETRICS, pages 13–24. ACM, 2010.

[44] Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81:2340–2361, 1977.

[45] Gómez-Maŕın, A. M. and Hernández-Ort́ız, J. P. Mean Field Approxim-
ation of Langmuir-Hinshelwood CO-Surface Reactions Considering Lat-
eral Interactions. The Journal of Physical Chemistry, 117(30):15716–
15727, 2013.

[46] Gribaudo, M. and Cerotti, D. and Bobbio, A. Analysis of on-off policies
in sensor networks using interacting Markovian agents. In PerCom, pages
300–305. IEEE Computer Society, 2008.

[47] Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., and Dagon, D.
Peer-to-peer botnets: Overview and case study. In HotBots. USENIX
Association, 2007.

[48] Hall, A.R. Generalized Method of Moments. Advanced Texts in Econo-
metrics. Oxford University Press, 2005.

[49] Hayden, R.A. Convergence of ODE approximations and bounds on per-
formance models in the steady-state. In PASTA, pages 49–56, 2010.

[50] Hayden, R.A. Mean Field for Performance Models with
Deterministically-Timed Transitions. In QEST, pages 63–73. IEEE
Computer Society, 2012.

[51] Hayden, R.A. and Bradley, J.T. A fluid analysis framework for a
Markovian process algebra. Theoretical Computer Science, 411(22-24):
2260–2297, 2010.

[52] Hayden, R.A., and Horvàth, I., and Telek, M. Mean Field for Perform-
ance Models with Generally-Distributed Timed Transitions. In QEST,
volume 8657 of LNCS, pages 90–105. Springer, 2014.

[53] Heidelberger, P. Fast simulation of rare events in queueing and reliability
models. ACM Transactions on Modeling and Computer Simulation, 5:
43–85, 1995.

168 BIBLIOGRAPHY

[54] Henzinger, T.A. and Mateescu, M. and Mikeev, L. and Wolf, V. Hybrid
Numerical Solution of the Chemical Master Equation. In CMSB, pages
55–65. ACM, 2010.

[55] Hermanns, H., Hahn, E.M., Wachter, B., and Zhang, L. Time-bounded
model checking of infinite-state continuous-time Markov chains. Funda-
menta Informaticae, 95(1):129–155, 2009.

[56] Hillston, J. A compositional approach to performance modelling. Cam-
bridge University Press, 1996.

[57] Hillston, J. Fluid Flow Approximation of PEPA models. In QEST, pages
33–43. IEEE Computer Society, 2005.

[58] Hillston, J. The Benefits of Sometimes Not Being Discrete. In CONCUR,
volume 8704 of LNCS, pages 7–22. Springer, 2014.

[59] Hillston, J. and Tribastone, M. and Gilmore, S. Stochastic Process Al-
gebras: From Individuals to Populations. The Computer Journal, 55(7):
866–881, 2011.

[60] Ingber, L. Simulated annealing: Practice versus theory. Mathematical
and Computer Modelling, 18(11):29 – 57, 1993.

[61] Kaspersky Lab. Kaspersky Lab provides its insights on Stuxnet worm.
http://www.kaspersky.com/news?id=207576183, retrieved 7-10-2010.

[62] J.P. Katoen and A. Mereacre. Model Checking HML on Piecewise-
Constant Inhomogeneous Markov Chains. In FMATS, volume 5215 of
LNCS, pages 203–217. Springer, 2008.

[63] Kleczkowski, A. and Grenfell, B.T. Mean-field-type equations for spread
of epidemics: the ‘small world’ model. Physica A: Statistical Mechanics
and its Applications, 274(1–2):355 – 360, 1999.

[64] Kolesnichenko, A., de Boer, P. T., Remke, A., Zambon, E., Haverkort,
B.R. Is Quantitative Analysis of Stuxnet Possible? In Fast Abstracts
at QEST, CTIT Workshop Proceedings WP11-03, pages 9–10. CTIT,
University of Twente, 2011.

BIBLIOGRAPHY 169

[65] Kolesnichenko, A., Remke, A., de Boer, P.T. and Haverkort, B.R. Com-
parison of the mean-field approach and simulation in a peer-to-peer
botnet case study. In EPEW, volume 6977 of LNCS, pages 133–147.
Springer, 2011.

[66] Kolesnichenko, A., Remke, A., de Boer, P.T. and Haverkort, B.R. A
logic for model-checking mean-field models. In DSN/PDF, pages 1–12.
IEEE CS Press, 2013.

[67] Kolesnichenko, A., Senni, V., Pourranjabar, A., and Remke A. Ap-
plying Mean-field Approximation to Continuous Time Markov Chains.
Stochastic Model Checking. Rigorous Dependability Analysis Using Model
Checking Techniques for Stochastic Systems, LNCS 8453:242–280, 2014.

[68] Kriaa, S., Bouissou, M,. and Pietre-Cambacedes, L. Modeling the
Stuxnet attack with BDMP: Towards more formal risk assessments. In
CRiSIS, pages 1–8. IEEE, 2012.

[69] Kurtz, T.G. Solutions of Ordinary Differential Equations as Limits of
Pure Jump Markov Processes. Journal of Applied Probability, 7(1):49–58,
1970.

[70] Latella, D., Loreti, M. and Massink, M. On-the-fly Fast Mean-Field
Model-Checking. In TGC, volume 8358 of LNCS, pages 297–314.
Springer, 2014.

[71] Le Boudec, J.Y. The Stationary Behaviour of Fluid Limits of Reversible
Processes is Concentrated on Stationary Points. Technical report, 2010.

[72] Le Boudec, J.Y., McDonald, D., and Mundinger, J. A generic mean field
convergence result for systems of interacting objects. In QEST, pages
3–18. IEEE Computer Society, 2007.

[73] Liddle, A. R. Statistical Methods for Cosmological Parameter Selection
and Estimation. Annual Review of Nuclear and Particle Science, 59(1):
95–114, 2009.

[74] Maler, O. and Nickovic, D. Monitoring temporal properties of continuous
signals. In FORMATS, volume 3253 of LNCS, pages 152–166. Springer,
2004.

170 BIBLIOGRAPHY

[75] Mathworks. Global Optimization Toolbox: User’s Guide (r2011b). http:
//www.mathworks.nl/help/gads/index.html, 2011.

[76] Mikeev, L. and Wolf, V. Parameter Estimation for Stochastic Hybrid
Models of Biochemical Reaction Networks. In HSCC, pages 155–166.
ACM, 2012.

[77] Moore, D. and Shannon, C. and Brown, J. Code-Red: a case study on
the spread and victims of an Internet worm. In IMW, pages 273–284.
ACM SIGCOMM/USENIX, 2002.

[78] Myung, I.J. Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology, 47(1):90 – 100, 2003.

[79] Nelder, J. A. and Mead, R. A Simplex Method for Function Minimiza-
tion. The Computer Journal, 7(4):308–313, 1965.

[80] Nickovic, D. and Maler, O. AMT: a property-based monitoring tool for
analog systems. In FORMATS, volume 4763 of LNCS, pages 304–319.
Springer, 2007.

[81] University of California. Lawrence Berkeley National Laboratory. http:
//www.lbl.gov/.

[82] Paxson, V. Bro: A System for Detecting Network Intruders in Real-time.
Computer Networks, 31(23-24):2435–2463, 1999.

[83] Pnueli, A. The temporal logic of programs. In FOCS, pages 46 –57.
IEEE Computer Society, 1977.

[84] Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. Parameter es-
timation for differential equations: a generalized smoothing approach.
Journal of the Royal Statistical Society: Series B (Statistical Methodo-
logy), 69(5):741–796, 2007.

[85] Remke, A., and Haverkort, B.R. CSL Model Checking Algorithms for
Infinite-State Structured Markov Chains. In FORMATS, volume 4763 of
LNCS, pages 336–351. Springer, 2007.

[86] Rizk, A., Batt, G., Fages, F., and Soliman, S. On a continuous degree
of satisfaction of temporal logic formulae with applications to systems
biology. In CMSB, volume 5307 of LNCS, pages 251–268. Springer, 2008.

BIBLIOGRAPHY 171

[87] Sanders, W.H., and Meyer, J. Stochastic Activity Networks: Formal
Definitions and Concepts. Lectures on Formal Methods and Performance
Analysis, 2090:315–343, 2001.

[88] Silicon Defence. Code Red analysis page. http://web.archive.org/

web/20011031043459/http://www.silicondefense.com/cr/, 2011.

[89] Silva, M. and Recalde, L. On fluidification of Petri Nets: from discrete
to hybrid and continuous models . Annual Reviews in Control, 28(2):253
– 266, 2004.

[90] Simon, R.J. Windows NT Win32 API SuperBible. Waite Group Press,
1997.

[91] Stefanek, A., Hayden, R.A., and Bradley, J.T. Mean-field analysis of hy-
brid Markov population models with time-inhomogeneous rates. Annals
of Operations Research, pages 1–27, 2014.

[92] Stefanek, A., Hayden, R.A., Gonagle, M.M., and Bradley, J.T. Mean-
field analysis of Markov models with reward feedback. In ASMTA,
volume 7314 of LNCS, pages 193–211, 2012.

[93] Storn, R. and Price, K. Differential Evolution - a Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of
Global Optimization, 11:341–359, 1997.

[94] Symantec. Norton Cybercrime Report: The Human Impact. http:

//www.symantec.com/content/en/us/home_homeoffice/media/pdf/

cybercrime_report/Norton_USA-Human%20Impact-A4_Aug4-2.pdf,
2010.

[95] The Cooperative Association for Internet Data Analysis. The UCSD
Network Telescope. http://www.eEye.com.

[96] The Cooperative Association for Internet Data Analysis. The caida data-
set on the code-red worms - july and august 2001. http://www.caida.
org/data/passive/codered_worms_dataset.xml, 2001.

[97] Tribastone, M. and Gilmore, S. and Hillston, J. Scalable Differential
Analysis of Process Algebra Models. IEEE Transactions on Software
Engineering, 38(1):205–219, 2012.

172 BIBLIOGRAPHY

[98] van Kampen, N.G. Stochastic Processes in Physics and Chemistry.
North-Holland Personal Library. Elsevier Science, 2011.

[99] van Ruitenbeek, E. and Sanders, W.H. Modeling peer-to-peer botnets.
In QEST, pages 307–316. IEEE Computer Society, 2008.

[100] Wikia. CodeRed. http://malware.wikia.com/wiki/CodeRed#, 2006.

[101] Winkel, B. Parameter estimates in differential equation models for chem-
ical kinetics. International Journal of Mathematical Education in Science
and Technology, 42(1):37 — 51, 2010.

[102] Witten, I.H, Frank, E., Hall, M.A. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Publishers, 3rd edi-
tion, 2011.

[103] Wolfram Research, Inc. Mathematica tutorial. http://reference.

wolfram.com/mathematica/tutorial/IntroductionToManipulate.

html, 2010.

[104] Wolfram Research, Inc. NMinimize. http://reference.wolfram.com/
mathematica/ref/NMinimize.html, 2014.

[105] Wolfram Research, Inc. Optimization. Mathematica Guide. http:

//reference.wolfram.com/mathematica/guide/Optimization.html,
2014.

[106] Zhang, Z. Parameter estimation techniques: a tutorial with application
to conic fitting. Image and Vision Computing, 15(1):59 – 76, 1997.

[107] Zhigljavsky, A.A. Theory of Global Random Search. Mathematics and
its Applications. Springer, 1991.

[108] Zou, C.C., Gong, W., and Towsley, D. Code Red Worm Propagation
Modeling and Analysis. In CCS, pages 138–147. ACM, 2002.

Acknowledgements
As many other activities in my life, completing this thesis would not be possible
without help and support of many people. In this part of the thesis I would
like to express my gratitude to all of you.

I want to start with my supervisors, prof. dr. ir. Boudewijn R. Haverkort,
prof. dr. Anne Remke, and dr. ir. Pieter-Tjerk de Boer. I consider myself
very lucky because I had an opportunity to work with them. I am thankful to
Boudewijn for always being inspirational, very professional, extremely helpful,
and understanding. Many thanks go to Anne for number of discussions (both
professional and personal), fresh ideas, and guidance through the challenging
academical world. I am grateful to Pieter-Tjerk for sharing his broad know-
ledge on topics related to nearly anything, for many fruitful discussions, for
always being precise and careful with the details.

I would like to thank the members of my graduation committee for their
comments on thesis thesis. Special thanks to Joost-Pieter Katoen and Hans
van den Berg for their detailed comments, and Peter Buchholz for the fruitful
discussion.

I want to express my gratitude to all my teachers andmentors, who inspired
me on my way to this PhD project. First of all I would like to mention the
person, who laid the foundation of my interest in math and computer science,
Yuriy Vasilievich Lepechin, National Teacher of Russia, Hero of Labour of the
Russian Federation, and my math teacher. He tough me to work hard, to be
patient, and to never give up on what I want to do, and I am grateful for each
extra hour I spent behind the computer or math books. In addition I would
like to thank prof. dr. Ljudmila A. Bordag whose experience, understanding
and kindness helped me to finish master program in Sweden.

I would like to acknowledge my DACS colleagues for making UT a joyous
place, where both professional and personal help can be easily found. Thanks
to Hamed for our long and interesting discussions and for being my yes and
hands in the office when I was absent, to Idilio, Rafael, and Giovane for all

174

the laughs we had in our old office. Many thanks to all of you, Aiko, Hans,
Geert, Anna, Martijn, Ramin, M&M (Mozhdeh and Morteza), Sarwar, Bjorn,
Luuk, Jair, Jessica, Roland, Freek, Rick, Ricardo, Karol, Wouter, Georgios,
Mataijs, Daniel, Martijn, Tiago, Desi, and Stephan for your help, for sharing
your knowledge and experience, for every smile during DACS uitjes and re-
treats, and for making every day at DACS exciting. I would like to thank our
secretary Jeanette Rebel-de Boer for her professionalism and ability to help in
any situation, and for practically being our Dutch mammy.

I would also like to thank Jair and Victoria for agreeing to be my paranymphs.
You both are amazing people and very good friends. I am thankful for having
you in my life.

Talking about amazing people, I want to mention my old and new friends.
I would like to thank Galochka, Natashechka, Chukochka, Kasya, Stramilochka
and Sanek for being with me through more then 10 (or even 15) years of my
life, for sharing many-many funny, interesting, sometimes crazy or even dan-
gerous stories, for always being supportive and understanding. I am thankful
to Zhenechka, Katjushka, Lorik and Zmaray for the happy times in Groningen
and outside it. I would like to thank all the nice people I met in Enschede
during these happy 4,5 years, to mention few names: Sanjka, Ksenja, Olja,
Anton, Nuno, Zambon, Oscar, Tanja, Andrey, Regina, Aydar and many-many
more. Thank you for all the smiles you gave me. Additionally I would like to
thank Angel, who helped me to keep my body and mind balanced for the last
two years..

I would like to express my biggest love and gratitude to my family. To my
mum Irina and dad Victor for always being supportive and loving parents, for
trusting me and giving me all the opportunities they could to fulfil my dreams.
I would like to thank my granny Tonja for sharing her love and wisdom, for
being my role-model since I was a little girl. To my parents in law Valentina
and Nikolay, my sister Nastja, and my big extended family for their love and
support. And last but not least, my husband Vitechka, thank you for your
patience, for your enormous help, and for making me a happy loved wife!

Благодарности
Как и многое другое в моей жизни, завершение этой диссертации было
бы невозможно без помощи и поддержки многих людей. В этой части
диссертации я бы хотела выразить мою благодарность всем этим людям.

Я хочу начать со слов благодарности в адрес моих научных руководи-
телей: проф. Баудевайн Хаферкорт, проф. Аннэ Ремке, и др. Питер-
Тьерк де Бур. Я очень счастлива, что имела возможность работать с
вами. Я благодарна Баудевайну за то, что он всегда был вдохновляющим,
профессиональным и понимающим руководителем. Спасибо Аннэ за ее
прекрасные идеи, за ее помощь и поддержку в профессиональных и личных
вопросах. Я благодарна Питеру-Тьерку за то, что он всегда был готов
поделиться своими обширными знаниями во всех областях, за множество
интересных и плодотворных дискуссий и за его внимание к деталям.

Я хотела бы поблагодарить членов комиссии за их комментарии к
данной диссертации. Особая благодарность Юсту-Питеру Катуну и Хансу
ван ден Бергу за очень подробные и интересные комментарии и Питеру
Буххолцу за плодотворную беседу.

Я хочу поблагодарить всех моих учителей и руководителей, которые
помогли мне на моем пути к докторской. Мой первоначальный интерес к
серьёзной математике и информатике был заложен Юрием Васильевичем
Лепехиным, Народным учителем России, Героем Труда Российской Феде-
рации. Он научил меня быть настойчивой в достижении цели, много
трудиться и никогда не сдаваться, и я бесконечно благодарна ему за каж-
дый дополнительный час, что я провела за компьютером или задачкой.
Также я хотела бы поблагодсарить проф. Людмилу Алексеевну Бордаг,
чьи знания и опыт, понимание и доброта помогли мне закончить магист-
ратуру в Швеции.

Я бы хотела поблагодарить моих коллег за то, что они сделали универ-
ситет местом, где всегда можно рассчитывать на профессиональную по-
мощь и личную поддержку. Спасибо Хамеду за наши долгие и интересные

176

разговоры, Идилио, Рафаелю иДжоване за все смешные ситуации, которые
происходили в нашем старом офисе. Огромное спасибо Айко, Хансу, Хер-
ту, Анне, Мартайну, Рамину, М&М (Можде и Мортезе), Сарвару, Бьёр-
ну, Люку, Жаиру, Джессике, Роланду, Фрейку, Рику, Рикардо, Каролу,
Ваутеру, Джорджиусу, Матайсу, Даниелю, Мартайну, Тьяго, Дези и
Стэфану за их помощь, за то,что делились своими знаниями и за каждую
улыбку во время групповых выездов. Я также хочу поблагодарить секре-
таря группыЖанет Ребел-де Бур за ее профессионализм и умение помочь
в любой ситуации и за то, что она заботится о нас, как наша общая
голландская мама.

Мне также очень хочется поблагодарить Викторию иЖаира за то, что
они согласились быть моими паранимфами. Вы оба просто потрясающие
люди и очень хорошие друзья. Я очень благодарна вам за то, что вы есть
в моей жизни.

И если уж я начала говорить о потрясающих людях, я хочу сказать
несколько слов о моих старых и новых друзьях. Я хочу поблагодарить
Галочку, Наташечку, Чукочку, Касю, Страмилочку и Санька за то, что
они были со мной долгие 10 (а некоторые и 15) лет, за огромное количество
смешных, интересных, иногда сумасшедших или даже опасных историй,
связывающих нас, за их поддержку и понимание. Я благодарнаЖeнечке,
Катюшке, Лорочке и Змараю за счастливые моменты, которые мы вместе
пережили в Гронингене и за его пределами. Я бы хотела поблагодарить
замечательных людей, которых я встретила в Энсхеде за эти 4,5 года:
Саньку, Ксеню, Олю, Антона, Нуно, Замбона, Оскара, Таню, Андрея, Ре-
гину, Айдара и многих-многих других. Спасибо за все те улыбки, что вы
мне подарили.

Я бы хотела выразить свою огромную любовь и благодарность моей
семье. Моим родителям Ирине и Виктору я благодарна за их любовь и
поддержку, за их доверие и огромную помощь во всех моих начинаниях.
Я бы хотела поблагодарить мою бабушку Тоню за то, что она делилась
со мной своей мудростью, дарила мне свою любовь и за то, что она до
сих пор является примером для подражания для меня. Моим вторым
родителям Валентине и Николаю, моей сестре Насте и всей наше большой
семье я благодарна за их любовь и поддержку. И последним по списку,
но не по значению, я бы хотела поблагодарить моего мужа Витечку за
его терпение, поддержку, огромную помощь, за его любовь и за то, что он
делает меня счастливой женой.

About the author

Анна Викторовна (Аня) Колесниченко

Figure 1: Photo was taken by
Jacob Staley for the spacial eddi-
tion of the UT news (December
2012). Style and article: Nissrin
Kissi.

Anna (Anja) Kolesnichenko was born in
Volgograd, USSR, on the 13th of May
1985. She finished high-school with the
specialization in mathematics and com-
puter science in 2002. Afterwards she
started her hight education in faculty of
Mathematics, in Volgograd State Univer-
sity (VolSU). She graduated from VolSU
with the speciality in Applied Mathem-
atics and Computer Science in 2007. She
spent one year in Halmstad, Sweden,
where she obtained a master degree in
Financial mathematics in 2008. She
started her PhD research at Centre of
Telematics and information Technology
(CTIT), University of Twente, as a mem-
ber of the Design and Analysis of Com-
munication Systems (DACS) group on
1st of April 2010. During her PhD
work she was involved in MATMaM and
ROCKS projects, and has authored sev-
eral international publications and served
as a reviewer for international conferences and workshops. Below is her Cur-
riculum Vitae and a list of publications.

178

Experience

Vocational

2010–2014 PhD researcher at Design and Analysis of Commu-

nication Systems, University of Twente, the Neth-

erlands

2008–2010 PhD researcher at Groningen Bioinformatics Cen-

ter, University of Groningen, the Netherlands

2008 Assistant specialist at Department of documentary

operations and exchange control, Foreign Trade

Bank (VTB), Russia

2007–2008 Intern at Group Risk Management (RC market Risk

and P&L Unit), HSH Nordbank AG, Germany

Miscellaneous

2002 - 2005 Instructor at Summer school for gifted kids ”Integral“, Vol-
gograd, Russia.

2002 - 2006 Intern at Social Opinion Survey companies, Volgograd, Rus-
sia.

Education

2006–2007 Master of Financial Mathematics at Halmstad Uni-

versity, Sweden.

2007 University Diploma with Specialization in Mathem-
atics (pre Master) at Halmstad University, Sweden.

2002–2007 Specialist (eq. Master) of Applied Mathematics and
Computer Science at Volgograd State University,

Russia.

1997–2002 Math-specialized graduate at Secondary School 78,

Volgograd, Russia.

About the author 179

Publications
2014 Kolesnichenko, A., Senni, V., Pourranjabar, A., and Remke, A.

Applying Mean-Field Approximation to Continuous Time
Markov Chains. Stochastic Model Checking. Rigorous Depend-
ability Analysis Using Model Checking Techniques for Stochastic
Systems. LNCS 8453:242-280.

2013 Kolesnichenko, A. and de Boer, P.T. and Remke, A. and Haverkort,
B.R. A logic for model-checking mean-field models. In:
43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pp. 1-12. IEEE.

2012 Kolesnichenko, A. and Remke, A. and de Boer, P.T. and Haverkort,
B.R.A logic for model-checking of mean-field models. Tech-
nical report. Accepted as presentation report for Tenth Workshop
on Quantitative Aspects of Programming Languages.

2011 Kolesnichenko, A. and de Boer, P.T. and Remke, A.K.I. and
Zambon, E. and Haverkort, B.R. Is Quantitative Analysis of
Stuxnet Possible? In: 8th International Conference on Quant-
itative Evaluation of SysTems: Fast Abstracts, pp. 9-10. CTIT
Workshop Proceedings WP11-03. Centre for Telematics and In-
formation Technology University of Twente.

2011 Kolesnichenko, A. and Remke, A. and de Boer, P.T. and Haverkort,
B.R. Comparison of the mean-field approach and simula-
tion in a peer-to-peer botnet case study. In: 8th European
Performance Engineering Workshop, pp. 133-147. LNCS 6977.
Springer.

